Detection of splicing forgery using differential evolution and wavelet decomposition

被引:0
|
作者
Kashyap, Abhishek [1 ]
Suresh, B. [1 ]
Gupta, Hariom [1 ]
机构
[1] Jaypee Inst Informat Technol, Dept Elect & Commun Engn, Noida 201304, Uttar Pradesh, India
来源
COMPUTER JOURNAL | 2020年 / 63卷 / 11期
关键词
Differential evolution; Wavelet decomposition; Block matching; JPEG; PNG; BMP; TIFF; IMAGE; OPTIMIZATION;
D O I
10.1093/comjnl/bxz107
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we have proposed a computationally efficient algorithm to detect splicing (copy-create) forgery, our proposed method is developed by using differential evolution and wavelet decomposition, the differential evolution algorithm automatically generates customized parameter values of tampered images, and wavelet decomposition is used to process large-size images under block-based framework. Our proposed method is resilient to distortions, such as the addition of Gaussian noise, scaling and compression of the forged images.
引用
收藏
页码:1727 / 1737
页数:11
相关论文
共 50 条
  • [31] An Adaptive Copy-Move Forgery Detection Using Wavelet Coefficients Multiscale Decay
    Bruni, Vittoria
    Ramella, Giuliana
    Vitulano, Domenico
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2019, PT I, 2019, 11678 : 469 - 480
  • [32] Passive copy move image forgery detection using undecimated dyadic wavelet transform
    Muhammad, Ghulam
    Hussain, Muhammad
    Bebis, George
    DIGITAL INVESTIGATION, 2012, 9 (01) : 49 - 57
  • [33] Passive Detection of Copy-Move Forgery using Wavelet Transforms and SIFT Features
    Hashmi, Mohammad Farukh
    Hambarde, Aaditya
    Anand, Vijay
    Keskar, Avinash
    JOURNAL OF INFORMATION ASSURANCE AND SECURITY, 2014, 9 (04): : 197 - 204
  • [34] Multiscale Attention Network for Detection and Localization of Image Splicing Forgery
    Xu, Yanzhi
    Irfan, Muhammad
    Fang, Aiqing
    Zheng, Jiangbin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [35] Splicing Image Forgery Detection by Deploying Deep Learning Model
    Krishnamoorthy, N.
    Amuthadevi, C.
    Geedtha, M.K.
    Reddy, Poli Lokeshwara
    Anitha Rani, K.S.
    Gopinathan, R.
    International Conference on Automation, Computing and Renewable Systems, ICACRS 2022 - Proceedings, 2022, : 1116 - 1120
  • [36] Splicing forgery localisation using colour illumination inconsistencies
    Sekhar, P. N. R. L. Chandra
    Shankar, T. N.
    INTERNATIONAL JOURNAL OF ELECTRONIC SECURITY AND DIGITAL FORENSICS, 2021, 13 (03) : 346 - 358
  • [37] Image Splicing Forgery Detection Using Feature-Based of Sonine Functions and Deep Features
    Al-Shamasneh, Ala'a R.
    Ibrahim, Rabha W.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 78 (01): : 795 - 810
  • [38] Copy move and splicing forgery detection using deep convolution neural network, and semantic segmentation
    Neeru Abhishek
    Multimedia Tools and Applications, 2021, 80 : 3571 - 3599
  • [39] Image splicing forgery detection based on low-dimensional singular value decomposition of discrete cosine transform coefficients
    Moghaddasi, Zahra
    Jalab, Hamid A.
    Noor, Rafidah Md.
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (11): : 7867 - 7877
  • [40] Copy move and splicing forgery detection using deep convolution neural network, and semantic segmentation
    Abhishek
    Jindal, Neeru
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (03) : 3571 - 3599