Moments of general time dependent branching processes with applications

被引:1
|
作者
Mori, T. F. [1 ]
Rokob, S. [2 ]
机构
[1] Eotvos Lorand Univ, Dept Probabil Theory & Stat, Pazmany P S 1-C, H-1117 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Dept Stochast, Egry J U 1, H-1111 Budapest, Hungary
关键词
Crump-Mode-Jagers process; Burkholder-Rosenthal nequality; renewal equation; evolving random graph; maximal degree; GROWTH;
D O I
10.1007/s10474-019-00976-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give sufficient conditions for a Crump-Mode-Jagers processto be bounded in L-k for a given k > 1. This result is then applied to a recent random graph process motivated by pairwise collaborations and driven by time-dependent branching dynamics. We show that the maximal degree has the samerate of increase as the degree process of a fixed vertex.
引用
收藏
页码:131 / 149
页数:19
相关论文
共 50 条
  • [21] Branching Processes - A General Concept
    Greven, Andreas
    Rippl, Thomas
    Gloede, Patrick
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2021, 18 (01): : 635 - 706
  • [22] Harmonic Moments of Branching Processes in Random Environments
    Wang, Wei Gang
    Lv, Ping
    Hu, Di He
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (07) : 1087 - 1096
  • [23] General branching processes with immigration
    J Appl Probab, 4 (940):
  • [24] EMBEDDABILITY OF DISCRETE TIME SIMPLE BRANCHING PROCESSES INTO CONTINUOUS TIME BRANCHING PROCESSES
    KARLIN, S
    MCGREGOR, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 132 (01) : 115 - &
  • [25] ON AGE DEPENDENT BRANCHING PROCESSES
    WEINER, HJ
    ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (04): : 1071 - &
  • [26] ON AGE DEPENDENT BRANCHING PROCESSES
    WEINER, H
    JOURNAL OF APPLIED PROBABILITY, 1966, 3 (02) : 383 - &
  • [27] The growth of general population-size-dependent branching processes year by year
    Jagers, P
    Sagitov, S
    JOURNAL OF APPLIED PROBABILITY, 2000, 37 (01) : 1 - 14
  • [28] DIFFUSION APPROXIMATIONS FOR SELF-EXCITED SYSTEMS WITH APPLICATIONS TO GENERAL BRANCHING PROCESSES
    Xu, Wei
    ANNALS OF APPLIED PROBABILITY, 2024, 34 (03): : 2650 - 2713
  • [29] Time-dependent branching processes: a model of oscillating neuronal avalanches
    Pausch, Johannes
    Garcia-Millan, Rosalba
    Pruessner, Gunnar
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [30] DENSITY DEPENDENT CONTINUOUS-TIME MARKOV BRANCHING-PROCESSES
    VIAUD, DPL
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1985, 21 (03): : 289 - 303