Data assimilation for three-dimensional phase-field simulation of dendritic solidification using the local ensemble transform Kalman filter

被引:15
|
作者
Yamanaka, Akinori [1 ]
Takahashi, Kazuki [2 ]
机构
[1] Tokyo Univ Agr & Technol, Inst Engn, Div Adv Mech Syst Engn, 2-24-16 Naka Cho, Koganei, Tokyo 1848588, Japan
[2] Tokyo Univ Agr & Technol, Grad Sch Engn, Dept Mech Syst Engn, 2-24-16 Naka Cho, Koganei, Tokyo 1848588, Japan
来源
关键词
Phase-field model; Data assimilation; Bayes' theorem; Solidification; Parameter estimation; METEOROLOGICAL OBSERVATIONS; GRAIN-GROWTH; PREDICTION; MODEL;
D O I
10.1016/j.mtcomm.2020.101331
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Data assimilation (DA) based on Bayes' theorem helps improve the accuracy of numerical models and simultaneously enables the estimation of unknown parameters used in the numerical model by combining simulation results with observational data. We applied the local ensemble transform Kalman filter (LETKF), a computationally efficient and accurate DA methodology, to a phase-field model of dendritic solidification in a binary alloy. We demonstrated the efficiency of LETKF through numerical experiments (twin experiments) wherein we estimated the unknown state of the solidification and the model parameters from synthetic observation datasets of a growing dendrite morphology. Results of the twin experiments show that using LETKF we could successfully estimate three-dimensional (3D) time evolution of the solute concentration-field in the liquid phase. Further, we could inversely identify multiple model parameters, including interfacial energy between the solid and liquid phases and the solute diffusion coefficient in the liquid phase only from the 3D morphological information of a growing dendrite. We demonstrated that the LETKF-based DA method is a promising methodology for performing accurate phase-field simulations in conjunction with experimental data.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Data assimilation using an ensemble Kalman filter technique
    Houtekamer, PL
    Mitchell, HL
    MONTHLY WEATHER REVIEW, 1998, 126 (03) : 796 - 811
  • [22] Data Assimilation Using the Constrained Ensemble Kalman Filter
    Phale, Hemant A.
    Oliver, Dean S.
    SPE JOURNAL, 2011, 16 (02): : 331 - 342
  • [23] A modified phase-field three-dimensional model for droplet impact with solidification
    Shen, Mingguang
    Li, Ben Q.
    Yang, Qingzhen
    Bai, Yu
    Wang, Yu
    Zhu, Shaochong
    Zhao, Bin
    Li, Tianqing
    Hu, Yongbao
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2019, 116 : 51 - 66
  • [24] Assimilation of ground-based GNSS data using a local ensemble Kalman filter
    Shao, Changliang
    Nerger, Lars
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [25] Simulating the three-dimensional dendritic growth of Al alloy using the phase-field method
    Zhao, DP
    Jing, T
    Liu, BC
    ACTA PHYSICA SINICA, 2003, 52 (07) : 1737 - 1742
  • [26] Research of three-dimensional dendritic growth using phase-field method based on GPU
    Zhu, Changsheng
    Jia, Jinfang
    Feng, Li
    Xiao, Rongzhen
    Dong, Ruihong
    COMPUTATIONAL MATERIALS SCIENCE, 2014, 91 : 146 - 152
  • [27] Water Level Simulation in River Network by Data Assimilation Using Ensemble Kalman Filter
    Chen, Yifan
    Cao, Feifeng
    Meng, Xiangyong
    Cheng, Weiping
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [28] Data assimilation using Ensemble Transform Kalman Filter (ETKF) in ROMS model for Indian Ocean
    Md. Nurujjaman
    A. Apte
    P. Vinayachandran
    The European Physical Journal Special Topics, 2013, 222 : 875 - 883
  • [29] Data assimilation using Ensemble Transform Kalman Filter (ETKF) in ROMS model for Indian Ocean
    Nurujjaman, Md.
    Apte, A.
    Vinayachandran, P.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (3-4): : 875 - 883
  • [30] Hourly Aerosol Assimilation of Himawari-8 AOT Using the Four-Dimensional Local Ensemble Transform Kalman Filter
    Dai, Tie
    Cheng, Yueming
    Suzuki, Kentaroh
    Goto, Daisuke
    Kikuchi, Maki
    Schutgens, Nick A. J.
    Yoshida, Mayumi
    Zhang, Peng
    Husi, Letu
    Shi, Guangyu
    Nakajima, Teruyuki
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2019, 11 (03) : 680 - 711