Data assimilation for three-dimensional phase-field simulation of dendritic solidification using the local ensemble transform Kalman filter

被引:15
|
作者
Yamanaka, Akinori [1 ]
Takahashi, Kazuki [2 ]
机构
[1] Tokyo Univ Agr & Technol, Inst Engn, Div Adv Mech Syst Engn, 2-24-16 Naka Cho, Koganei, Tokyo 1848588, Japan
[2] Tokyo Univ Agr & Technol, Grad Sch Engn, Dept Mech Syst Engn, 2-24-16 Naka Cho, Koganei, Tokyo 1848588, Japan
来源
关键词
Phase-field model; Data assimilation; Bayes' theorem; Solidification; Parameter estimation; METEOROLOGICAL OBSERVATIONS; GRAIN-GROWTH; PREDICTION; MODEL;
D O I
10.1016/j.mtcomm.2020.101331
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Data assimilation (DA) based on Bayes' theorem helps improve the accuracy of numerical models and simultaneously enables the estimation of unknown parameters used in the numerical model by combining simulation results with observational data. We applied the local ensemble transform Kalman filter (LETKF), a computationally efficient and accurate DA methodology, to a phase-field model of dendritic solidification in a binary alloy. We demonstrated the efficiency of LETKF through numerical experiments (twin experiments) wherein we estimated the unknown state of the solidification and the model parameters from synthetic observation datasets of a growing dendrite morphology. Results of the twin experiments show that using LETKF we could successfully estimate three-dimensional (3D) time evolution of the solute concentration-field in the liquid phase. Further, we could inversely identify multiple model parameters, including interfacial energy between the solid and liquid phases and the solute diffusion coefficient in the liquid phase only from the 3D morphological information of a growing dendrite. We demonstrated that the LETKF-based DA method is a promising methodology for performing accurate phase-field simulations in conjunction with experimental data.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Quantitative three-dimensional phase-field modeling of dendritic solidification coupled with local ensemble transform Kalman filter
    Takahashi, Kazuki
    Yamanaka, Akinori
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 190
  • [2] Data assimilation for phase-field models based on the ensemble Kalman filter
    Sasaki, Kengo
    Yamanaka, Akinori
    Ito, Shin-ichi
    Nagao, Hiromichi
    COMPUTATIONAL MATERIALS SCIENCE, 2018, 141 : 141 - 152
  • [3] Data assimilation using a climatologically augmented local ensemble transform Kalman filter
    Kretschmer, Matthew
    Hunt, Brian R.
    Ott, Edward
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2015, 67 : 1 - 9
  • [4] Phase-field simulation of three-dimensional dendritic growth
    Zhu, Changsheng
    Wang, JunWei
    MANUFACTURING SCIENCE AND ENGINEERING, PTS 1-5, 2010, 97-101 : 3769 - +
  • [5] A simulation study using a local ensemble transform Kalman filter for data assimilation in New York Harbor
    Hoffman, Ross N.
    Ponte, Rui M.
    Kostelich, Eric J.
    Blumberg, Alan
    Szunyogh, Istvan
    Vinogradov, Sergey V.
    Henderson, John M.
    Journal of Atmospheric and Oceanic Technology, 2008, 25 (09): : 1638 - 1656
  • [6] A simulation study using a local ensemble transform Kalman filter for data assimilation in New York Harbor
    Hoffman, Ross N.
    Ponte, Rui M.
    Kostelich, Eric J.
    Blumberg, Alan
    Szunyogh, Istvan
    Vinogradov, Sergey V.
    Henderson, John M.
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2008, 25 (09) : 1638 - 1656
  • [7] Numerical simulation of three-dimensional dendritic growth using phase-field method
    Zhu Chang-Sheng
    Feng Li
    Wang Zhi-Ping
    Xiao Rong-Zhen
    ACTA PHYSICA SINICA, 2009, 58 (11) : 8055 - 8061
  • [8] Data assimilation with a local Ensemble Kalman Filter applied to a three-dimensional biological model of the Middle Atlantic Bight
    Hu, Jiatang
    Fennel, Katja
    Mattern, Jann Paul
    Wilkin, John
    JOURNAL OF MARINE SYSTEMS, 2012, 94 : 145 - 156
  • [9] Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter
    Hunt, Brian R.
    Kostelich, Eri J.
    Szunyogh, Istvan
    PHYSICA D-NONLINEAR PHENOMENA, 2007, 230 (1-2) : 112 - 126
  • [10] Weight interpolation for efficient data assimilation with the Local Ensemble Transform Kalman Filter
    Yang, Shu-Chih
    Kalnay, Eugenia
    Hunt, Brian
    Bowler, Neill E.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2009, 135 (638) : 251 - 262