Use of hyperspectral remote sensing reflectance for detection and assessment of the harmful alga, Karenia brevis

被引:79
|
作者
Craig, Susanne E.
Lohrenz, Steven E.
Lee, Zhongping
Mahoney, Kevin L.
Kirkpatrick, Gary J.
Schofield, Oscar M.
Steward, Robert G.
机构
[1] Univ So Mississippi, Dept Marine Sci, Stennis Space Ctr, MS 39529 USA
[2] USN, Res Lab, Stennis Space Ctr, MS 39529 USA
[3] Naval Oceanog Off, Stennis Space Ctr, MS 39529 USA
[4] Mote Marine Lab, Sarasota, FL 34236 USA
[5] Rutgers State Univ, Inst Marine & Coastal Sci, New Brunswick, NJ 08901 USA
[6] Florida Environm Res Inst, Tampa, FL 33611 USA
关键词
D O I
10.1364/AO.45.005414
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We applied two numerical methods to in situ hyperspectral measurements of remote sensing reflectance R-rs to assess the feasibility of remote detection and monitoring of the toxic dinoflagellate, Karenia brevis, which has been shown to exhibit unique absorption properties. First, an existing quasi-analytical algorithm was used to invert remote sensing reflectance spectra, R-rs(lambda), to derive phytoplankton absorption spectra, alpha(Rrs)(phi)(lambda). Second, the fourth derivatives of the a alpha(Rrs)(phi)(lambda) spectra were compared to the fourth derivative of a reference K. brevis absorption spectrum by means of a similarity index (SI) analysis. Comparison of reflectance-derived a. with filter pad measured a, found them to agree well (R-2 = 0.891; average percentage difference, 22.8%). A strong correlation (R-2 = 0.743) between surface cell concentration and the SI was observed, showing the potential utility of SI magnitude as an indicator of bloom strength. A sensitivity analysis conducted to investigate the effects of varying levels of cell concentrations and colored dissolved organic matter (CDOM) on the efficacy of the quasi-analytical algorithm and SI found that alpha(Rrs)(phi)(lambda) could not be derived for very low cell concentrations and that, although it is possible to derive aR"(X) in the presence of high CDOM concentrations, CDOM levels influence the alpha(Rrs)(phi)(lambda) amplitude and shape. Results suggest that detection and mapping of K. brevis blooms based on hyperspectral measurements of R-rs are feasible.
引用
收藏
页码:5414 / 5425
页数:12
相关论文
共 50 条
  • [21] Synergistic use of multi- and hyperspectral remote sensing data and airborne LiDAR to retrieve forest floor reflectance
    Hovi, Aarne
    Schraik, Daniel
    Kuusinen, Nea
    Fabianek, Tomas
    Hanus, Jan
    Homolova, Lucie
    Juola, Jussi
    Lukes, Petr
    Rautiainen, Miina
    REMOTE SENSING OF ENVIRONMENT, 2023, 293
  • [22] Assessment of Aphid Infestation in Mustard by Hyperspectral Remote Sensing
    Jitendra Kumar
    Ananta Vashisth
    V. K. Sehgal
    V. K. Gupta
    Journal of the Indian Society of Remote Sensing, 2013, 41 : 83 - 90
  • [23] The use of multiangular reflectance for remote sensing of land vegetation
    Konda, A
    Yamamoto, H
    Kajiwara, K
    Honda, Y
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 3247 - 3250
  • [24] Anomaly Detection from Hyperspectral Remote Sensing Imagery
    Guo, Qiandong
    Pu, Ruiliang
    Cheng, Jun
    GEOSCIENCES, 2016, 6 (04)
  • [25] Industrial plume detection in hyperspectral remote sensing data
    Ammenberg, PPN
    Liljeberg, M
    Lindell, T
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (02) : 295 - 313
  • [26] Hyperspectral remote sensing for invasive species detection and mapping
    Ustin, SL
    DiPietro, D
    Olmstead, K
    Underwood, E
    Scheer, GJ
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 1658 - 1660
  • [27] Phytoplankton Group Identification Using Simulated and In situ Hyperspectral Remote Sensing Reflectance
    Xi, Hongyan
    Hieronymi, Martin
    Krasemann, Hajo
    Roettgers, Ruediger
    FRONTIERS IN MARINE SCIENCE, 2017, 4
  • [28] Detection of environmental changes using hyperspectral remote sensing
    Krezhova, D.
    Maneva, S.
    Petrov, N.
    Moskova, I.
    Krezhov, K.
    9TH INTERNATIONAL PHYSICS CONFERENCE OF THE BALKAN PHYSICAL UNION (BPU-9), 2016, 1722
  • [29] Stress detection in orchards with hyperspectral remote sensing data
    Kempeneers, P.
    De Backer, S.
    Zarco-Tejada, P. J.
    Delalieux, S.
    Sepulcre-Canto, G.
    Iribas, F. Morales
    van Aardt, J.
    Coppin, P.
    Scheunders, P.
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY VIII, 2006, 6359
  • [30] Spectral Similarity Assessment Based on a Spectrum Reflectance-Absorption Index and Simplified Curve Patterns for Hyperspectral Remote Sensing
    Ma, Dan
    Liu, Jun
    Huang, Junyi
    Li, Huali
    Liu, Ping
    Chen, Huijuan
    Qian, Jing
    SENSORS, 2016, 16 (02)