Fluid displacement during droplet formation at microfluidic flow-focusing junctions

被引:29
|
作者
Huang, Haishui [1 ,2 ]
He, Xiaoming [2 ,3 ,4 ]
机构
[1] Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Biomed Engn, Columbus, OH 43210 USA
[3] Ohio State Univ, Davis Heart & Lung Res Inst, Columbus, OH 43210 USA
[4] Ohio State Univ, Ctr Comprehens Canc, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
CORE-SHELL MICROCAPSULES; GENERATION; PARTICLES; KINETICS; REACTOR; SCALE; SIZE;
D O I
10.1039/c5lc00730e
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Microdroplets and microcapsules have been widely produced using microfluidic flow-focusing junctions for biomedical and chemical applications. However, the multiphase microfluidic flow at the flow-focusing junction has not been well investigated. In this study, the displacement of two (core and shell) aqueous fluids that disperse into droplets altogether in a carrier oil emulsion was investigated both numerically and experimentally. It was found that extensive displacement of the two aqueous fluids within the droplet during its formation could occur as a result of the shear effect of the carrier fluid and the capillary effect of interfacial tension. We further identified that the two mechanisms of fluid displacement can be evaluated by two dimensionless parameters. The quantitative relationship between the degree of fluid displacement and these two dimensionless parameters was determined experimentally. Finally, we demonstrated that the degree of fluid displacement could be controlled to generate hydrogel microparticles of different morphologies using planar or nonplanar flow-focusing junctions. These findings should provide useful guidance to the microfluidic production of microscale droplets or capsules for various biomedical and chemical applications.
引用
收藏
页码:4197 / 4205
页数:9
相关论文
共 50 条
  • [31] Negative Pressure Induced Droplet Generation in a Microfluidic Flow-Focusing Device
    Teo, Adrian J. T.
    Li, King-Ho Holden
    Nam-Trung Nguyen
    Guo, Wei
    Heere, Nadine
    Xi, Heng-Dong
    Tsao, Chia-Wen
    Li, Weihua
    Tan, Say Hwa
    ANALYTICAL CHEMISTRY, 2017, 89 (08) : 4387 - 4391
  • [32] Numerical simulation of fluid flow mixing in flow-focusing microfluidic devices
    Aghaei, Halimeh
    Nazar, Ali Reza Solaimany
    CHEMICAL PRODUCT AND PROCESS MODELING, 2023, 18 (04): : 633 - 646
  • [33] Hydrodynamic control of droplet formation in narrowing jet and tip streaming regime using microfluidic flow-focusing
    Paiboon, Narin
    Surassmo, Suvimol
    Ruktanonchai, Uracha Rungsardthong
    Soottitantawat, Apinan
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2022, 150
  • [34] Regulation of droplet size and flow regime by geometrical confinement in a microfluidic flow-focusing device
    Sontti, Somasekhara Goud
    Atta, Arnab
    PHYSICS OF FLUIDS, 2023, 35 (01)
  • [35] Numerical investigation of electrohydrodynamic effect for size-tunable droplet formation in a flow-focusing microfluidic device
    Majd, Sara Alizadeh
    Zand, Mahdi Moghimi
    Javidi, Reza
    Rahimian, Mohammad Hassan
    SOFT MATERIALS, 2023, 21 (02) : 174 - 190
  • [36] Effect of local geometry on droplet formation in flow-focusing microchannel
    Song Q.
    Yang Z.
    Chen Y.
    Luo X.
    Chen J.
    Liang Y.
    Yang, Zhi (yangzhi@gdut.edu.cn), 1600, Materials China (71): : 1540 - 1553
  • [37] Effect of nanoparticle surfactants on droplet formation in a flow-focusing microchannel
    Qi, Jie
    Yu, Zheng Liang
    Liao, Guo Peng
    Luo, Zheng Yuan
    Bai, Bo Feng
    PHYSICS OF FLUIDS, 2021, 33 (11)
  • [38] Bubble formation and breakup mechanism in a microfluidic flow-focusing device
    Fu, Taotao
    Ma, Youguang
    Funfschilling, Denis
    Li, Huai Z.
    CHEMICAL ENGINEERING SCIENCE, 2009, 64 (10) : 2392 - 2400
  • [39] Scaling the formation of slug bubbles in microfluidic flow-focusing devices
    Fu, Taotao
    Funfschilling, Denis
    Ma, Youguang
    Li, Huai Z.
    MICROFLUIDICS AND NANOFLUIDICS, 2010, 8 (04) : 467 - 475
  • [40] Scaling the formation of slug bubbles in microfluidic flow-focusing devices
    Taotao Fu
    Denis Funfschilling
    Youguang Ma
    Huai Z. Li
    Microfluidics and Nanofluidics, 2010, 8 : 467 - 475