Stress Prediction of the Particle Structure of All-Solid-State Batteries by Numerical Simulation and Machine Learning

被引:3
|
作者
Komori, Chiyuri [1 ]
Ishikawa, Shota [1 ]
Nunoshita, Keita [1 ]
So, Magnus [1 ]
Kimura, Naoki [1 ]
Inoue, Gen [1 ]
Tsuge, Yoshifumi [1 ]
机构
[1] Kyushu Univ, Dept Chem Engn, Fukuoka, Japan
来源
关键词
all-solid-state batteries; simulation; discrete element method; machine learning; convolutional neural network; stress distribution; reaction area; MECHANICS;
D O I
10.3389/fceng.2022.836282
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
All-Solid-state batteries (ASSBs) are non-flammable and safe and have high capacities. Thus, ASSBs are expected to be commercialized soon for use in electric vehicles. However, because the electrode active material (AM) and solid electrolyte (SE) of ASSBs are both solid particles, the contact between the particles strongly affects the battery characteristics, yet the correlation between the electrode structure and the stress at the contact surface between the solids remains unknown. Therefore, we used the results of numerical simulations as a dataset to build a machine learning model to predict the battery performance of ASSBs. Specifically, the discrete element method (DEM) was used for the numerical simulations. In these simulations, AM and SE particles were used to fill a model of the electrode, and force was applied from one direction. Thus, the stress between the particles was calculated with respect to time. Using the simulations, we obtained a sufficient data set to build a machine learning model to predict the distribution of interparticle stress, which is difficult to measure experimentally. Promisingly, the stress distribution predicted by the constructed machine learning model showed good agreement with the stress distribution calculated by DEM.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Research progress on chloride solid electrolytes for all-solid-state batteries
    Zheng, Mingyuan
    Li, Xin
    Sun, Jianwei
    Wang, Xinlu
    Liu, Guixia
    Yu, Wensheng
    Dong, Xiangting
    Wang, Jinxian
    JOURNAL OF POWER SOURCES, 2024, 595
  • [42] Garnet Solid Electrolyte for Advanced All-Solid-State Li Batteries
    Xu, Laiqiang
    Li, Jiayang
    Deng, Wentao
    Shuai, Honglei
    Li, Shuo
    Xu, Zhifeng
    Li, Jinhui
    Hou, Hongshuai
    Peng, Hongjian
    Zou, Guoqiang
    Ji, Xiaobo
    ADVANCED ENERGY MATERIALS, 2021, 11 (02)
  • [43] SOLID REDOX POLYMERIZATION ELECTRODES AND THEIR USE IN ALL-SOLID-STATE BATTERIES
    VISCO, SJ
    LIU, M
    ARMAND, MB
    DEJONGHE, LC
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1990, 190 : 185 - 195
  • [44] Composite Polymer Solid Electrolytes for All-Solid-State Sodium Batteries
    He, Yiying
    Yang, Shoumeng
    Liu, Congcong
    Ouyang, Yue
    Li, Yanni
    Zhu, Hangmin
    Yao, Yu
    Yang, Hai
    Rui, Xianhong
    Yu, Yan
    SMALL METHODS, 2025,
  • [45] Studies of lithium argyrodite solid electrolytes for all-solid-state batteries
    Rao, R. P.
    Adams, S.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (08): : 1804 - 1807
  • [46] A review on 1D materials for all-solid-state lithium-ion batteries and all-solid-state lithium-sulfur batteries
    Yang, Qi
    Deng, Nanping
    Zhao, Yixia
    Gao, Lu
    Cheng, Bowen
    Kang, Weimin
    CHEMICAL ENGINEERING JOURNAL, 2023, 451
  • [47] Densification and stress distribution within the sintered structure of ceramic electrolytes for all-solid-state Li-ion batteries
    Ni, Kuo-Hsuan
    Chen, Zhe-Long
    Li, Chia-Chen
    ACTA MATERIALIA, 2024, 275
  • [48] All-Solid-State Ion-Selective Electrode Inspired from All-Solid-State Li-Ion Batteries
    Tatara, Ryoichi
    Shibasaki, Yuki
    Igarashi, Daisuke
    Osada, Hiroyuki
    Aoki, Kazuma
    Miyamoto, Yusuke
    Takayama, Toshiharu
    Matsui, Takahiro
    Komaba, Shinichi
    ANALYTICAL CHEMISTRY, 2025, 97 (09) : 4819 - 4823
  • [49] Challenges and Prospects of All-Solid-State Electrodes for Solid-State Lithium Batteries
    Dong, Shaowen
    Sheng, Li
    Wang, Li
    Liang, Jie
    Zhang, Hao
    Chen, Zonghai
    Xu, Hong
    He, Xiangming
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (49)
  • [50] Nitride solid-state electrolytes for all-solid-state lithium metal batteries
    Li, Weihan
    Li, Minsi
    Ren, Haoqi
    Kim, Jung Tae
    Li, Ruying
    Sham, Tsun-Kong
    Sun, Xueliang
    ENERGY & ENVIRONMENTAL SCIENCE, 2025,