Simple Transitive 2-Representations for Two Nonfiat 2-Categories of Projective Functors

被引:2
|
作者
Mazorchuk, V. [1 ]
Zhang, X. [2 ]
机构
[1] Uppsala Univ, Uppsala, Sweden
[2] East China Normal Univ, Shanghai, Peoples R China
基金
瑞典研究理事会;
关键词
D O I
10.1007/s11253-019-01615-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that any simple transitive 2-representation of the 2-category of projective endofunctors for the quiver algebra of and for the quiver algebra of is equivalent to a cell 2-representation.
引用
收藏
页码:1873 / 1900
页数:28
相关论文
共 50 条
  • [31] 2-CATEGORIES AND 2-KNOTS
    FISCHER, JE
    DUKE MATHEMATICAL JOURNAL, 1994, 75 (02) : 493 - 526
  • [32] Absolute lax 2-categories
    Grandis, Marco
    APPLIED CATEGORICAL STRUCTURES, 2006, 14 (03) : 191 - 214
  • [33] Nerves of 2-categories and 2-categorification of (∞, 2)-categories
    Ozornova, Viktoriya
    Rovelli, Martina
    ADVANCES IN MATHEMATICS, 2021, 391
  • [34] Locating reaction with 2-categories
    Sassone, V
    Sobocinski, P
    THEORETICAL COMPUTER SCIENCE, 2005, 333 (1-2) : 297 - 327
  • [35] YONEDA STRUCTURES ON 2-CATEGORIES
    STREET, R
    WALTERS, R
    JOURNAL OF ALGEBRA, 1978, 50 (02) : 350 - 379
  • [36] Absolute Lax 2-categories
    Marco Grandis
    Applied Categorical Structures, 2006, 14 : 191 - 214
  • [37] Group actions on 2-categories
    Bernaschini, Eugenia
    Galindo, Cesar
    Mombelli, Martin
    MANUSCRIPTA MATHEMATICA, 2019, 159 (1-2) : 81 - 115
  • [38] Inner products of 2-representations
    Ganter, Nora
    ADVANCES IN MATHEMATICS, 2015, 285 : 301 - 351
  • [39] COHOMOLOGY THEORY IN 2-CATEGORIES
    Nakaoka, Hiroyuki
    THEORY AND APPLICATIONS OF CATEGORIES, 2008, 20 : 543 - 604
  • [40] Group actions on 2-categories
    Eugenia Bernaschini
    César Galindo
    Martín Mombelli
    manuscripta mathematica, 2019, 159 : 81 - 115