Artificial intelligence for materials discovery

被引:65
|
作者
Gomes, Carla R. [1 ]
Selman, Bart [1 ]
Gregoire, John M. [2 ]
机构
[1] Cornell Univ, Dept Comp Sci, Ithaca, NY 14853 USA
[2] CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA
关键词
simulation; elemental; x-ray diffraction (XRD); DEEP NEURAL-NETWORKS; GO; GAME;
D O I
10.1557/mrs.2019.158
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Continued progress in artificial intelligence (AI) and associated demonstrations of superhuman performance have raised the expectation that AI can revolutionize scientific discovery in general and materials science specifically. We illustrate the success of machine learning (ML) algorithms in tasks ranging from machine vision to game playing and describe how existing algorithms can also be impactful in materials science, while noting key limitations for accelerating materials discovery. Issues of data scarcity and the combinatorial nature of materials spaces, which limit application of ML techniques in materials science, can be overcome by exploiting the rich scientific knowledge from physics and chemistry using additional AI techniques such as reasoning, planning, and knowledge representation. The integration of these techniques in materials-intelligent systems will enable AI governance of the scientific method and autonomous scientific discovery. © 2019 Materials Research Society.
引用
收藏
页码:538 / 544
页数:7
相关论文
共 50 条
  • [21] Accelerating perovskite materials discovery and correlated energy applications through artificial intelligence
    Liang, Jiechun
    Wu, Tingting
    Wang, Ziwei
    Yu, Yunduo
    Hu, Linfeng
    Li, Huamei
    Zhang, Xiaohong
    Zhu, Xi
    Zhao, Yu
    ENERGY MATERIALS, 2022, 2 (03):
  • [22] Guest Editorial: Discovery and Artificial Intelligence
    King, Bernard F., Jr.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2017, 209 (06) : 1189 - 1190
  • [23] Artificial intelligence in drug discovery and development
    Paul, Debleena
    Sanap, Gaurav
    Shenoy, Snehal
    Kalyane, Dnyaneshwar
    Kalia, Kiran
    Tekade, Rakesh K.
    DRUG DISCOVERY TODAY, 2020, 26 (01) : 80 - 93
  • [24] Scientific discovery in the age of artificial intelligence
    Wang, Hanchen
    Fu, Tianfan
    Du, Yuanqi
    Gao, Wenhao
    Huang, Kexin
    Liu, Ziming
    Chandak, Payal
    Liu, Shengchao
    Van Katwyk, Peter
    Deac, Andreea
    Anandkumar, Anima
    Bergen, Karianne
    Gomes, Carla P.
    Ho, Shirley
    Kohli, Pushmeet
    Lasenby, Joan
    Leskovec, Jure
    Liu, Tie-Yan
    Manrai, Arjun
    Marks, Debora
    Ramsundar, Bharath
    Song, Le
    Sun, Jimeng
    Tang, Jian
    Velickovic, Petar
    Welling, Max
    Zhang, Linfeng
    Coley, Connor W.
    Bengio, Yoshua
    Zitnik, Marinka
    NATURE, 2023, 620 (7972) : 47 - 60
  • [25] Amplify scientific discovery with artificial intelligence
    Gil, Yolanda
    Greaves, Mark
    Hendler, James
    Hirsh, Haym
    SCIENCE, 2014, 346 (6206) : 171 - 172
  • [26] Application of Artificial Intelligence in Drug Discovery
    Chopra, Hitesh
    Baig, Atif A.
    Gautam, Rupesh K.
    Kamal, Mohammad A.
    CURRENT PHARMACEUTICAL DESIGN, 2022, 28 (33) : 2690 - 2703
  • [27] A Hands-on Artificial Intelligence Discovery
    Petracek, Peter
    HORTSCIENCE, 2022, 57 (09) : S79 - S79
  • [28] Adding Artificial Intelligence to Drug Discovery
    May M.
    Genetic Engineering and Biotechnology News, 2019, 39 (04): : 26 - 29
  • [29] Artificial intelligence for proteomics and biomarker discovery
    Mann, Matthias
    Kumar, Chanchal
    Zeng, Wen-Feng
    Strauss, Maximilian T.
    CELL SYSTEMS, 2021, 12 (08) : 759 - 770
  • [30] Artificial intelligence for molecular mechanism discovery
    Jung, Hendrik
    Covino, Roberto
    Arjun, A.
    Leitold, Christian
    Bolhuis, Peter G.
    Dellago, Christoph
    Hummer, Gerhard
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 281A - 282A