On Bell's duality theorem for harmonic functions

被引:0
|
作者
Motos, J
Pérez-Esteva, S
机构
[1] Univ Politecn Valencia, Dept Matemat Aplicada, E-46071 Valencia, Spain
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Unidad Cuernavaca, Cuernavaca 62251, Morelos, Mexico
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Define h(infinity)(E) as the subspace of C-infinity((B) over bar, E) consisting of all harmonic functions in B, where B is the ball in the n-dimensional Euclidean space and E is any Banach space. Consider also the space h(-infinity)(E*) consisting of all harmonic E*-valued functions g such that (1 - \x\)(m)f is bounded for some m > 0. Then the dual h(infinity)(E)* is represented by h(-infinity)(E*) through [f, g](0) = lim(r-1) integral(B)[f(rx), g(x)] dx, f is an element of h(-infinity)(E*), g is an element of h(infinity)(E). This extends the results of S. Bell in the scalar case.
引用
收藏
页码:49 / 60
页数:12
相关论文
共 50 条
  • [21] The duality theorem for min-max functions
    Gaubert, S
    Gunawardena, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (01): : 43 - 48
  • [22] Locality and Bell's Theorem
    W. De Baere
    A. Mann
    M. Revzen
    Foundations of Physics, 1999, 29 : 67 - 77
  • [23] Classicality and Bell’s theorem
    Márton Gömöri
    Carl Hoefer
    European Journal for Philosophy of Science, 2023, 13
  • [24] Bell's theorem for trajectories
    Gocanin, Dragoljub
    Dimic, Aleksandra
    Del Santo, Flavio
    Dakic, Borivoje
    PHYSICAL REVIEW A, 2020, 102 (02)
  • [25] Classicality and Bell's theorem
    Gomori, Marton
    Hoefer, Carl
    EUROPEAN JOURNAL FOR PHILOSOPHY OF SCIENCE, 2023, 13 (03)
  • [26] DUALITY AND MULTIPLIERS IN SPACES OF HARMONIC-FUNCTIONS
    SHIELDS, AL
    WILLIAMS, DL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A123 - A123
  • [27] Linear functionals and the duality principle for harmonic functions
    Ali, Rosihan M.
    Ponnusamy, S.
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (13) : 1565 - 1571
  • [28] Classes of meromorphic harmonic functions and duality principle
    Jacek Dziok
    Analysis and Mathematical Physics, 2020, 10
  • [29] Classes of meromorphic harmonic functions and duality principle
    Dziok, Jacek
    ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)
  • [30] Anti-Bell - Refutation Of Bell's Theorem
    Barukcic, Ilija
    QUANTUM THEORY: RECONSIDERATION OF FOUNDATIONS 6, 2012, 1508 : 354 - 358