On Bell's duality theorem for harmonic functions

被引:0
|
作者
Motos, J
Pérez-Esteva, S
机构
[1] Univ Politecn Valencia, Dept Matemat Aplicada, E-46071 Valencia, Spain
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Unidad Cuernavaca, Cuernavaca 62251, Morelos, Mexico
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Define h(infinity)(E) as the subspace of C-infinity((B) over bar, E) consisting of all harmonic functions in B, where B is the ball in the n-dimensional Euclidean space and E is any Banach space. Consider also the space h(-infinity)(E*) consisting of all harmonic E*-valued functions g such that (1 - \x\)(m)f is bounded for some m > 0. Then the dual h(infinity)(E)* is represented by h(-infinity)(E*) through [f, g](0) = lim(r-1) integral(B)[f(rx), g(x)] dx, f is an element of h(-infinity)(E*), g is an element of h(infinity)(E). This extends the results of S. Bell in the scalar case.
引用
收藏
页码:49 / 60
页数:12
相关论文
共 50 条