Learning and Utilizing a Pool of Features in Non-negative Matrix Factorization

被引:0
|
作者
Yoshida, Tetsuya [1 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
来源
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Learning and utilizing a pool of features for a given data is important to achieve better performance in data analysis. Since many real world data can be represented as a non-negative data matrix, Non-negative Matrix Factorization (NMF) has recently become popular to deal with data under the non-negativity constraint. However, when the number of features is increased, the constraint imposed on the features can hinder the effective utilization of the learned representation. We conduct extensive experiments to investigate the effectiveness of several state-of-the-art NMF algorithms for learning and utilizing a pool of features over document datasets. Experimental results revealed that coping with the non-orthogonality of features is crucial to achieve a stable performance for exploiting a large number of features in NMF.
引用
收藏
页码:96 / 105
页数:10
相关论文
共 50 条
  • [21] Dropout non-negative matrix factorization
    He, Zhicheng
    Liu, Jie
    Liu, Caihua
    Wang, Yuan
    Yin, Airu
    Huang, Yalou
    KNOWLEDGE AND INFORMATION SYSTEMS, 2019, 60 (02) : 781 - 806
  • [22] Non-Negative Matrix Factorization with Constraints
    Liu, Haifeng
    Wu, Zhaohui
    PROCEEDINGS OF THE TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-10), 2010, : 506 - 511
  • [23] Deep Learning and Non-Negative Matrix Factorization in Recognition of Mammograms
    Swiderski, Bartosz
    Kurek, Jaroslaw
    Osowski, Stanislaw
    Kruk, Michal
    Barhoumi, Walid
    EIGHTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2016), 2017, 10225
  • [24] Nonlinear Non-negative Matrix Factorization using Deep Learning
    Zhang, Hui
    Liu, Huaping
    Song, Rui
    Sun, Fuchun
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 477 - 482
  • [25] Stretched non-negative matrix factorization
    Gu, Ran
    Rakita, Yevgeny
    Lan, Ling
    Thatcher, Zach
    Kamm, Gabrielle E.
    O'Nolan, Daniel
    Mcbride, Brennan
    Wustrow, Allison
    Neilson, James R.
    Chapman, Karena W.
    Du, Qiang
    Billinge, Simon J. L.
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [26] Uniqueness of non-negative matrix factorization
    Laurberg, Hans
    2007 IEEE/SP 14TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2007, : 44 - 48
  • [27] Non-negative Matrix Factorization on Manifold
    Cai, Deng
    He, Xiaofei
    Wu, Xiaoyun
    Han, Jiawei
    ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 63 - +
  • [28] Bayesian Non-negative Matrix Factorization
    Schmidt, Mikkel N.
    Winther, Ole
    Hansen, Lars Kai
    INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2009, 5441 : 540 - +
  • [29] Non-negative Matrix Factorization on GPU
    Platos, Jan
    Gajdos, Petr
    Kroemer, Pavel
    Snasel, Vaclav
    NETWORKED DIGITAL TECHNOLOGIES, PT 1, 2010, 87 : 21 - 30
  • [30] On affine non-negative matrix factorization
    Laurberg, Hans
    Hansen, Lars Kai
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PTS 1-3, 2007, : 653 - +