A couple of real hyperbolic disc bundles over surfaces

被引:1
|
作者
Anan'in, Sasha [1 ]
Chiovetto, Philipy, V [1 ]
机构
[1] Univ Sao Paulo, ICMC, Dept Matemat, Caixa Postal 668, BR-13566590 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Real hyperbolic disc bundles; right-angled polyhedra; GLT-conjecture;
D O I
10.4171/GGD/585
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Applying the techniques developed in [1], we construct new real hyperbolic manifolds whose underlying topology is that of a disc bundle over a closed orientable surface. By the Gromov-Lawson-Thurston conjecture [6], such bundles M -> S should satisfy the inequality vertical bar eM/chi S vertical bar <= 1, where eM stands for the Euler number of the bundle and chi S, for the Euler characteristic of the surface. In this paper, we construct new examples that provide a maximal value of vertical bar eM/chi S vertical bar = 3/5 among all known examples. The former 5 maximum, belonging to Feng Luo [10], was vertical bar eM/chi S vertical bar = 1/2.
引用
收藏
页码:1419 / 1428
页数:10
相关论文
共 50 条
  • [42] Principal Schottky bundles over Riemann surfaces
    Casimiro, A. C.
    Ferreira, S.
    Florentino, C.
    GEOMETRIAE DEDICATA, 2019, 201 (01) : 379 - 409
  • [43] Surface bundles over surfaces of small genus
    Bryan, Jim
    Donagi, Ron
    GEOMETRY & TOPOLOGY, 2002, 6 : 59 - 67
  • [44] On vector bundles over surfaces and Hilbert schemes
    Biswas, Indranil
    Nagaraj, D. S.
    ARCHIV DER MATHEMATIK, 2013, 101 (06) : 513 - 517
  • [45] On vector bundles over surfaces and Hilbert schemes
    Indranil Biswas
    D. S. Nagaraj
    Archiv der Mathematik, 2013, 101 : 513 - 517
  • [46] The Ricci flow for circle bundles over surfaces
    Bazdar, Arash
    Fotopoulos, Georgios
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024,
  • [47] Sections of fiber bundles over surfaces and TQFTs
    Turaev, Vladimir
    QUANTUM TOPOLOGY, 2010, 1 (03) : 275 - 319
  • [48] Principal Schottky bundles over Riemann surfaces
    A. C. Casimiro
    S. Ferreira
    C. Florentino
    Geometriae Dedicata, 2019, 201 : 379 - 409
  • [49] Flexible bundles over rigid affine surfaces
    Dubouloz, Adrien
    COMMENTARII MATHEMATICI HELVETICI, 2015, 90 (01) : 121 - 137
  • [50] SURFACE BUNDLES OVER SURFACES WITH A FIXED SIGNATURE
    Lee, Ju A.
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (02) : 545 - 561