Temperature dependent characteristics of λ∼3.8 μm room-temperature continuous-wave quantum-cascade lasers

被引:99
|
作者
Yu, J. S. [1 ]
Evans, A. [1 ]
Slivken, S. [1 ]
Darvish, S. R. [1 ]
Razeghi, M. [1 ]
机构
[1] Northwestern Univ, Ctr Quantum Devices, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
关键词
D O I
10.1063/1.2216024
中图分类号
O59 [应用物理学];
学科分类号
摘要
Temperature dependent characteristics of lambda similar to 3.8 mu m quantum-cascade lasers (QCLs) operating up to 318 K in continuous-wave (cw) mode are reported. A high-reflectivity coated 11.5-mu m-wide and 4-mm-long epilayer-down bonded QCL using a diamond submount shows a considerable improved cw operation with an output power of 143 mW and a threshold current density of 1.51 kA/cm(2) at 298 K. The temperature dependence on optical and electrical performances of the QCLs with respect to the output power, slope efficiency, threshold current/voltage, turn-on voltage, differential series resistance, and emission wavelength are investigated systematically above liquid nitrogen temperature. (c) 2006 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Watt-Level Room Temperature Continuous-Wave Operation of Quantum Cascade Lasers With λ > 10 μm
    Xie, Feng
    Caneau, Catherine
    Leblanc, Herve P.
    Caffey, David P.
    Hughes, Lawrence C.
    Day, Timothy
    Zah, Chung-en
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2013, 19 (04)
  • [32] High-temperature continuous-wave operation of λ∼8 μm quantum cascade lasers
    Slivken, S
    Matlis, A
    Jelen, C
    Rybaltowski, A
    Diaz, J
    Razeghi, M
    APPLIED PHYSICS LETTERS, 1999, 74 (02) : 173 - 175
  • [33] Room temperature quantum cascade lasers with 22% wall plug efficiency in continuous-wave operation
    Wang, F.
    Slivken, S.
    Wu, D. H.
    Razeghi, M.
    OPTICS EXPRESS, 2020, 28 (12): : 17532 - 17538
  • [34] 1.3 W Quantum Cascade Lasers with Optimized Design for Continuous-Wave Operation at Room Temperature
    Lyakh, A.
    Pfluegl, C.
    Diehl, L.
    Wang, Q.
    Capasso, F.
    Wang, X. J.
    Fan, J. Y.
    Tanbun-Ek, T.
    Tsekoun, A.
    Maulini, R.
    Go, R.
    Patel, C. Kumar N.
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 1393 - +
  • [35] High power, room temperature, continuous-wave operation of quantum cascade lasers grown by GasMBE
    Evans, A
    David, J
    Doris, L
    Yu, JS
    Slivken, S
    Razeghi, M
    QUANTUM SENSING AND NANOPHOTONIC DEVICES, 2004, 5359 : 188 - 195
  • [36] High-power λ=8 μm quantum-cascade lasers at room temperature
    Dudelev, V. V.
    Mikhailov, D. A.
    Babichev, A. V.
    Andreev, A. D.
    Kognovitskaya, E. A.
    Bobretsova, Y. K.
    Slipchenko, S. O.
    Pikhtin, N. A.
    Gladyshev, A. G.
    Denisov, D. V.
    Novikov, I. I.
    Karachinsky, L. Ya
    Kuchinskii, V. I.
    Egorov, A. Yu
    Sokolovskii, G. S.
    INTERNATIONAL CONFERENCE PHYSICA.SPB/2019, 2019, 1400
  • [37] Room-Temperature Continuous-Wave Operation of Organometal Halide Perovskite Lasers
    Li, Zhitong
    Moon, Jiyoung
    Gharajeh, Abouzar
    Haroldson, Ross
    Hawkins, Roberta
    Hu, Walter
    Zakhidovi, Anvar
    Gu, Qing
    ACS NANO, 2018, 12 (11) : 10968 - 10976
  • [38] Quantum-Cascade Lasers Generating at the 4.8-μm Wavelength at Room Temperature
    V. V. Mamutin
    A. P. Vasil’ev
    A. V. Lyutetskii
    N. D. Il’inskaya
    A. A. Usikova
    Yu. M. Zadiranov
    N. A. Maleev
    A. N. Sofronov
    D. A. Firsov
    L. E. Vorob’ev
    V. M. Ustinov
    Technical Physics Letters, 2018, 44 : 814 - 816
  • [39] Cavity-length effects of high-temperature high-power continuous-wave characteristics in quantum-cascade lasers
    Yu, JS
    Evans, A
    David, J
    Doris, L
    Slivken, S
    Razeghi, M
    APPLIED PHYSICS LETTERS, 2003, 83 (25) : 5136 - 5138
  • [40] Quantum-Cascade Lasers Generating at the 4.8-m Wavelength at Room Temperature
    Mamutin, V. V.
    Vasil'ev, A. P.
    Lyutetskii, A. V.
    Il'inskaya, N. D.
    Usikova, A. A.
    Zadiranov, Yu. M.
    Maleev, N. A.
    Sofronov, A. N.
    Firsov, D. A.
    Vorob'ev, L. E.
    Ustinov, V. M.
    TECHNICAL PHYSICS LETTERS, 2018, 44 (09) : 814 - 816