Performance of Random Forest Classifier for Flood Mapping Using Sentinel-1 SAR Images

被引:2
|
作者
Chu, Yongjae [1 ]
Lee, Hoonyol [1 ]
机构
[1] Kangwon Natl Univ, Dept Geophys, Chunchon, South Korea
基金
新加坡国家研究基金会;
关键词
Classification; Random forest; Flood; Disaster; SAR; Sentinel-1;
D O I
10.7780/kjrs.2022.38.4.5
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The city of Khartoum, the capital of Sudan, was heavily damaged by the flood of the Nile in 2020. Classification using satellite images can define the damaged area and help emergency response. As Synthetic Aperture Radar (SAR) uses microwave that can penetrate cloud, it is suitable to use in the flood study. In this study, Random Forest classifier, one of the supervised classification algorithms, was applied to the flood event in Khartoum with various sizes of the training dataset and number of images using Sentinel-i SAR. To create a training dataset, we used unsupervised classification and visual inspection. Firstly, Random Forest was performed by reducing the size of each class of the training dataset, but no notable difference was found. Next, we performed Random Forest with various number of images. Accuracy became better as the number of images increased, but converged to a maximum value when the dataset covers the duration from flood to the completion of drainage.
引用
收藏
页码:375 / 386
页数:12
相关论文
共 50 条
  • [21] Sentinel-1 SAR and LiDAR to detect extent and depth flood using Random Forests machine learning
    Soria-Ruiz, Jesus
    Fernandez-Ordonez, Yolanda M.
    Ambrosio-Ambrosio, Juan P.
    Escalona-Maurice, Miguel A.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5113 - 5116
  • [22] LAND COVER MAPPING USING SENTINEL-1 SAR DATA
    Abdikan, S.
    Sanli, F. B.
    Ustuner, M.
    Calo, F.
    XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 41 (B7): : 757 - 761
  • [23] Flood inundation mapping and monitoring in Kaziranga National Park, Assam using Sentinel-1 SAR data
    Suranjana B. Borah
    Thota Sivasankar
    M. N. S. Ramya
    P. L. N. Raju
    Environmental Monitoring and Assessment, 2018, 190
  • [24] Fast Mapping of Large-Scale Landslides in Sentinel-1 SAR Images Using SPAUNet
    Shi, Xianjian
    Wu, Yifei
    Guo, Qing
    Li, Ni
    Lin, Zhiyong
    Qiu, Hua
    Pan, Bin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 7992 - 8006
  • [25] Flood inundation mapping and monitoring in Kaziranga National Park, Assam using Sentinel-1 SAR data
    Borah, Suranjana B.
    Sivasankar, Thota
    Ramya, M. N. S.
    Raju, P. L. N.
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2018, 190 (09)
  • [26] Flood Mapping Using Multi-temporal Sentinel-1 SAR Images: A Case Study—Inaouene Watershed from Northeast of Morocco
    Brahim Benzougagh
    Pierre-Louis Frison
    Sarita Gajbhiye Meshram
    Larbi Boudad
    Abdallah Dridri
    Driss Sadkaoui
    Khalid Mimich
    Khaled Mohamed Khedher
    Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2022, 46 : 1481 - 1490
  • [27] An automatic change detection approach for rapid flood mapping in Sentinel-1 SAR data
    Li, Yu
    Martinis, Sandro
    Plank, Simon
    Ludwig, Ralf
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 73 : 123 - 135
  • [28] Performance Analysis of Ship Wake Detection on Sentinel-1 SAR Images
    Graziano, Maria Daniela
    Grasso, Marco
    D'Errico, Marco
    REMOTE SENSING, 2017, 9 (11):
  • [29] Flood Mapping Using Multi-temporal Sentinel-1 SAR Images: A Case Study-Inaouene Watershed from Northeast of Morocco
    Benzougagh, Brahim
    Frison, Pierre-Louis
    Meshram, Sarita Gajbhiye
    Boudad, Larbi
    Dridri, Abdallah
    Sadkaoui, Driss
    Mimich, Khalid
    Khedher, Khaled Mohamed
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2022, 46 (02) : 1481 - 1490
  • [30] Flood Mapping Using Sentinel-1 Images and Lightweight U-Nets Trained on Synthesized Events
    Zortea, Maciel
    Muszynski, Michal
    Fraccaro, Paolo
    Weiss, Jonas
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20