Quantifying Trace 2,4,6-Trinitrotoluene (TNT) in Polymer Microspheres

被引:4
|
作者
Brewer, Timothy [1 ]
Staymates, Matthew [1 ]
Fletcher, Robert [1 ]
机构
[1] NIST, Mat Measurement Sci Div, Gaithersburg, MD 20899 USA
关键词
Microencapsulation of TNT; Explosives; PLGA; Quantification of TNT and PLGA; Explosives particle standards; FABRICATION; RELEASE;
D O I
10.1002/prep.201500141
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Well characterized test materials are essential for validating the performance of current trace explosive detection systems. Explosive encapsulated microspheres have proven to be a valuable test material for trace explosive detection because of their precise size, shape, and composition. Presented herein is the quantification of explosives in the polymer microspheres by high performance liquid chromatography with UV/Vis detection (HPLC-UV/Vis). A size exclusion separation is employed to quantify the amount of explosive encapsulated in cured microspheres. Complete quantification was achieved by simultaneously separating and quantifying the explosive and polymer components. Results indicate that approximately 30% of the TNT is lost in the manufacturing of the microspheres and subsequent loss from the cured microspheres is minimal if stored at 4 degrees C.
引用
收藏
页码:160 / 165
页数:6
相关论文
共 50 条
  • [21] Role of cyclodextrins in Fenton remediation of TNT (2,4,6-trinitrotoluene).
    Wei, B
    Tarr, MA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 : U828 - U828
  • [22] Biotransformation of 2,4,6-trinitrotoluene (tnt) by the fungus Fusarium oxysporum
    Hoehamer, Christopher F.
    Wolfe, N. Lee
    Eriksson, Karl Erik L.
    INTERNATIONAL JOURNAL OF PHYTOREMEDIATION, 2006, 8 (02) : 95 - 105
  • [23] Models of 2,4,6-trinitrotoluene (TNT) initial conversion by yeasts
    Zarlpov, SA
    Naumov, AV
    Abdrakhmanova, JF
    Garusov, AV
    Naumma, RP
    FEMS MICROBIOLOGY LETTERS, 2002, 217 (02) : 213 - 217
  • [24] Coupled photocatalytic and biological degradation of 2,4,6-trinitrotoluene (TNT)
    Hess, TF
    Lewis, TA
    Crawford, RL
    Katamneni, S
    Wells, JH
    Watts, RJ
    IN SITU AND ON-SITE BIOREMEDIATION, VOL 2, 1997, 4(2) (02): : 525 - 530
  • [25] A bioinspired peptide matrix for the detection of 2,4,6-trinitrotoluene (TNT)
    Komikawa, Takumi
    Tanaka, Masayoshi
    Yanai, Kentaro
    Johnson, Benjamin R. G.
    Critchley, Kevin
    Onodera, Takeshi
    Evans, Stephen D.
    Toko, Kiyoshi
    Okochi, Mina
    BIOSENSORS & BIOELECTRONICS, 2020, 153 (153):
  • [26] 2,4,6-trinitrotoluene (TNT) affects gill morphology in exposed fish
    Sensini, C.
    Della Torre, C.
    Corsi, I.
    Focardi, S.
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, 2008, 151 (01): : S52 - S52
  • [27] Photochemical and microbial degradation of 2,4,6-trinitrotoluene (TNT) in a freshwater environment
    Hwang, HM
    Slaughter, LF
    Cook, SM
    Cui, H
    BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, 2000, 65 (02) : 228 - 235
  • [28] Degradation of 2,4,6-trinitrotoluene (TNT) using iron nanoparticles embedded in polymer electrospun fibers
    Granda-Paz, Nelson
    Pantojas, Victor
    Ortiz, Carlos
    Otano, Wilfredo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [29] Treatment of 2,4,6-trinitrotoluene (TNT) red water by vacuum distillation
    Zhao, Quanlin
    Ye, Zhengfang
    Zhang, Mohe
    CHEMOSPHERE, 2010, 80 (08) : 947 - 950
  • [30] Combined photocatalytic and fungal treatment for the destruction of 2,4,6-trinitrotoluene (TNT)
    Hess, TF
    Lewis, TA
    Crawford, RL
    Katamneni, S
    Wells, JH
    Watts, RJ
    WATER RESEARCH, 1998, 32 (05) : 1481 - 1491