A new PI optimal linear quadratic state-estimate tracker for continuous-time non-square non-minimum phase systems

被引:5
|
作者
Tsai, Jason Sheng-Hong [1 ]
Liao, Ying-Ting [1 ]
Ebrahimzadeh, Faezeh [1 ]
Lai, Sheng-Ying [1 ]
Su, Te-Jen [2 ,3 ]
Guo, Shu-Mei [4 ]
Shieh, Leang-San [5 ]
Tsai, Tzong-Jiy [6 ]
机构
[1] Natl Cheng Kung Univ, Dept Elect Engn, Tainan, Taiwan
[2] Natl Kaohsiung Univ Appl Sci, Dept Elect Engn, Kaohsiung, Taiwan
[3] Kaohsiung Med Univ, Grad Inst Clin Med, Kaohsiung, Taiwan
[4] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan, Taiwan
[5] Univ Houston, Dept Elect & Comp Engn, Houston, TX USA
[6] Tung Fang Design Inst, Dept Game & Toy Design, Kaohsiung, Taiwan
关键词
Optimal linear quadratic estimator; frequency shaping; PID filter; non-minimum phase system; control zeros; DISTURBANCE CANCELLATION CONTROLLERS; DESIGN; IDENTIFICATION; ZEROS; RECOVERY;
D O I
10.1080/00207721.2016.1261201
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Based on the proportional-integral-derivative (PID) filter-shaping approach, this paper presents a new proportional-plus-integral (PI) optimal linear quadratic state estimator (LQSE) for the continuous-time non-square and non-minimum phase (NMP) multivariable systems. Together with the recently developed optimal linear quadratic tracker (LQT), the proposed LQSE-based tracker is able to optimally achieve good minimum phase-like tracking performances for a non-square NMP multivariable system with unmeasurable states and arbitrary command inputs.
引用
收藏
页码:1438 / 1459
页数:22
相关论文
共 40 条