Photothermal properties and photothermal conversion performance of nano-enhanced paraffin as a phase change thermal energy storage material

被引:104
|
作者
Yang, Ruitong [1 ]
Li, Dong [1 ,5 ]
Lopez Salazar, Samanta [1 ,3 ]
Rao, Zhonghao [2 ]
Arici, Muslum [1 ,4 ]
Wei, Wei [1 ]
机构
[1] Northeast Petr Univ, Sch Architecture & Civil Engn, Fazhan Lu St, Daqing 163318, Peoples R China
[2] China Univ Min & Technol, Sch Elect & Power Engn, Xuzhou 221116, Jiangsu, Peoples R China
[3] CENIDET TecNM SEP, Ctr Nacl Invest & Desarrollo Tecnol, Prol Av Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[4] Kocaeli Univ, Engn Fac, Mech Engn Dept, Umuttepe Campus, TR-41001 Kocaeli, Turkey
[5] Qingdao Univ Sci & Technol, Coll Electromech Engn, Qingdao 266061, Peoples R China
关键词
Nanoparticle; Nano-enhanced paraffin; Optical properties; Photothermal properties; Solar energy; OPTICAL-PROPERTIES; DIRECT ABSORPTION; HEAT-TRANSFER; THERMOOPTICAL PROPERTIES; SOLAR COLLECTOR; NANOFLUIDS; COMPOSITE; CARBON; WAX; NANOPARTICLES;
D O I
10.1016/j.solmat.2020.110792
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The paraffin incorporation in device of glass envelope allows the thermal regulation, increasing the thermal comfort and energy efficiency of buildings. Addition of nanoparticles has an advanced application prospect in the field of solar energy collection and storage capacity of glass envelope systems filled with paraffin. The present study conducts an experimental and numerical investigation in order to study photothermal properties of the paraffin incorporated ZnO or CuO nanoparticles. An experimental and theoretical model is also established to analyze the effect of nanoparticles on the thermophysical and optical properties of nano-enhanced paraffin. The results show that due to the presence of the nanoparticles, the transmittance of nano-enhanced paraffin decreases. On the other hand, temperature increment results in a small rise in the transmittance of nano-enhanced paraffin. The results also indicate that the utilized nanoparticles exhibit a higher attenuation to light, and the scattering effect cannot be avoided, where the maximum scattering proportion is 6.3%. Improvements of 5.87 and 13.12% in thermal conductivity of nano-enhanced paraffin at the volume fraction of 5 x 10(-4) vol% are obtained using ZnO and CuO nanoparticles, respectively. The evaluation of the photothermal performance based on the temperature variations shows that the CuO/paraffin can absorb more solar energy. The optimum photothermal performance can be satisfied by the nanoparticle volume fraction ranging from 5 x 10(-4)to 1.5 x 10(-3) vol%.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Synthesis and performance investigation of metal-organic framework derived from low-cost MXene precursor for enhanced thermal energy storage and photothermal conversion of phase change material
    Ali, Syed Awais
    Habib, Khairul
    Zaed, Ma
    Saidur, R.
    JOURNAL OF ENERGY STORAGE, 2025, 113
  • [42] THERMAL ANALYSIS OF A HIGH-TEMPERATURE HEAT PIPE-ASSISTED THERMAL ENERGY STORAGE SYSTEM WITH NANO-ENHANCED PHASE CHANGE MATERIAL
    Tiari, Saeed
    Mandavi, Mahboobe
    Thakore, Viren
    Joseph, Stacy
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 6B, 2019,
  • [43] A Novel Concept of Nano-Enhanced Phase Change Material
    Calota, Razvan
    Pop, Octavian
    Bode, Florin
    Croitoru, Cristiana
    Serafim, Andrada
    Barbulescu, Alina
    Damian, Celina
    Tefas, Lucia
    MATERIALS, 2024, 17 (17)
  • [44] Flexible phase change composites with enhanced thermal conductivity and mechanical properties for photothermal conversion and γ-rays shielding
    Cai, Tianyu
    Pang, Zhenqian
    Jiang, Zhuoni
    He, Fangfang
    Li, Yongsheng
    Tan, Gang
    Jiang, Tengyao
    Yang, Wenbin
    JOURNAL OF ENERGY STORAGE, 2024, 90
  • [45] Recent Advances in Nanoencapsulated and Nano-Enhanced Phase-Change Materials for Thermal Energy Storage: A Review
    Khlissa, Faical
    Mhadhbi, Mohsen
    Aich, Walid
    Hussein, Ahmed Kadhim
    Alhadri, Muapper
    Selimefendigil, Fatih
    Oztop, Hakan F.
    Kolsi, Lioua
    PROCESSES, 2023, 11 (11)
  • [46] Shape-memory phase change material enhanced by MWCNT for solar photothermal conversion
    Dai, Huageng
    Yuan, Jianjuan
    Kong, Xiangfei
    Zhao, Caimeng
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2024, 269
  • [47] Nanoparticle enhanced paraffin and tailing ceramic composite phase change material for thermal energy storage
    Li, Runfeng
    Zhou, Yang
    Duan, Xili
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (09) : 4547 - 4557
  • [48] Thermal Response and Photothermal Conversion Performance of Reversible Thermochromic Phase Change Microcapsules
    Wang X.
    Lei W.
    Zhu J.
    Zhang C.
    Cailiao Daobao/Materials Reports, 2023, 37 (20):
  • [49] Phase Change Energy Storage Material with Photocuring, Photothermal Conversion, and Self-Cleaning Performance via a Two-Layer Structure
    Liu, Ziyu
    Wang, Xiaoli
    Zhu, Xingyue
    Tian, Yazhou
    Cheng, Jue
    Zhang, Junying
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (51) : 57299 - 57310
  • [50] Mechanical vibration effects on the melting performance of nano-enhanced phase change material
    Ghosh, Amit Kumar
    Halder, Pabitra
    APPLIED THERMAL ENGINEERING, 2025, 269