Complete integrability of derivative nonlinear Schrodinger-type equations

被引:33
|
作者
Tsuchida, T [1 ]
Wadati, M [1 ]
机构
[1] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan
关键词
D O I
10.1088/0266-5611/15/5/317
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study matrix generalizations of derivative nonlinear Schrodinger-type equations, which were shown by Olver and Sokolov to possess a higher symmetry. We prove that two of them are 'C-integrable' and the rest of them are 'S-integrable' in Calogero's terminology.
引用
收藏
页码:1363 / 1373
页数:11
相关论文
共 50 条
  • [21] Multi-soliton solutions for the coupled nonlinear Schrodinger-type equations
    Meng, Gao-Qing
    Gao, Yi-Tian
    Yu, Xin
    Shen, Yu-Jia
    Qin, Yi
    NONLINEAR DYNAMICS, 2012, 70 (01) : 609 - 617
  • [22] Localization in physical systems described by discrete nonlinear Schrodinger-type equations
    Bishop, AR
    Kalosakas, G
    Rasmussen, KO
    Kevrekidis, PG
    CHAOS, 2003, 13 (02) : 588 - 595
  • [23] Nonlinear Schrodinger-type equations from multiscale reduction of PDEs. II. Necessary conditions of integrability for real PDEs
    Calogero, F
    Degasperis, A
    Xiaoda, J
    JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (06) : 2635 - 2652
  • [24] ON INTEGRABILITY OF NONAUTONOMOUS NONLINEAR SCHRODINGER EQUATIONS
    Suslov, Sergei K.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (09) : 3067 - 3082
  • [25] SMOOTHNESS AND APPROXIMATE PROPERTIES OF SOLUTIONS OF SCHRODINGER-TYPE ONE CLASS NONLINEAR EQUATIONS
    MURATBEKOV, MB
    OTELBAEV, M
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1989, (03): : 44 - 47
  • [26] Generalized Jacobi Elliptic Function Solution to a Class of Nonlinear Schrodinger-Type Equations
    Al-Muhiameed, Zeid I. A.
    Abdel-Salam, Emad A. -B.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2011, 2011
  • [27] Global well-posedness of the Cauchy problem for nonlinear Schrodinger-type equations
    Miao, Changxing
    Zhang, Bo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2007, 17 (01) : 181 - 200
  • [28] Global search for localised modes in scalar and vector nonlinear Schrodinger-type equations
    Alfimov, G. L.
    Barashenkov, I., V
    Fedotov, A. P.
    Smirnov, V. V.
    Zezyulin, D. A.
    PHYSICA D-NONLINEAR PHENOMENA, 2019, 397 : 39 - 53
  • [30] Semiclassical analysis of discretizations of Schrodinger-type equations
    Markowich, PA
    Pietra, P
    Pohl, C
    VLSI DESIGN, 1999, 9 (04) : 397 - 413