Some bounds on the generalised total chromatic number of degenerate graphs

被引:0
|
作者
Broere, Izak [1 ]
Semanisin, Gabriel [2 ]
机构
[1] Univ Pretoria, Dept Math & Appl Math, Pretoria, South Africa
[2] Safarik Univ, Fac Sci, Inst Comp Sci, Kosice, Slovakia
基金
新加坡国家研究基金会;
关键词
Combinatorial problems; Total colouring number; Graph property; k-Degenerate graph; MINIMAL REDUCIBLE BOUNDS;
D O I
10.1016/j.ipl.2017.02.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The total generalised colourings considered in this paper are colourings of the vertices and of the edges of graphs satisfying the following conditions: each set of vertices of the graph which receive the same colour induces an m-degenerate graph, each set of edges of the graph which receive the same colour induces an n-degenerate graph, and incident elements receive different colours. Bounds for the least number of colours with which this can be done for all k-degenerate graphs are obtained. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 33
页数:4
相关论文
共 50 条
  • [21] Generalised Mycielski graphs, signature systems, and bounds on chromatic numbers
    Simons, Gord
    Tardif, Claude
    Wehlau, David
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 122 : 776 - 793
  • [22] Lower Bounds on the Chromatic Number of Random Graphs
    Peter Ayre
    Amin Coja-Oghlan
    Catherine Greenhill
    Combinatorica, 2022, 42 : 617 - 658
  • [23] Bounds on the generalised acyclic chromatic numbers of bounded degree graphs
    Greenhill, C
    Pikhurko, O
    GRAPHS AND COMBINATORICS, 2005, 21 (04) : 407 - 419
  • [24] Bounds on the Generalised Acyclic Chromatic Numbers of Bounded Degree Graphs
    Catherine Greenhill
    Oleg Pikhurko
    Graphs and Combinatorics, 2005, 21 : 407 - 419
  • [25] Bounds for the Grundy chromatic number of graphs in terms of domination number
    Khaleghi, Abbas
    Zaker, Manouchehr
    arXiv, 2022,
  • [26] Bounds for the Grundy chromatic number of graphs in terms of domination number
    Khaleghi, Abbas
    Zaker, Manouchehr
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2022, 29 (02) : 193 - 206
  • [27] On the Adjacent Vertex Strong Distinguishing Total chromatic number of Some Graphs
    Yan, Qiantai.
    Li, Wuzhuang.
    2013 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND APPLICATIONS (ITA), 2013, : 391 - 394
  • [28] On Some Total Chromatic Number ofOuterplanar Graphs with Δ(G) = 6(English)
    Zhang Zhongfu
    Lu Xinzhong
    Han Jincang(Lanzhou Railway Institute 730070)
    应用数学, 1997, (04) : 90 - 90
  • [29] Upper Bounds on the D(β)-Vertex-Distinguishing Total-Chromatic Number of Graphs
    Liu Xin-sheng
    Zhu Zhi-qiang
    ARS COMBINATORIA, 2015, 119 : 403 - 411
  • [30] Star chromatic number of some graphs
    Akbari, S.
    Chavooshi, M.
    Ghanbari, M.
    Taghian, S.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (01)