Interaction-transformation symbolic regression with extreme learning machine

被引:16
|
作者
de Franca, Fabricio Olivetti [1 ,1 ]
de Lima, Maira Zabuscha [1 ]
机构
[1] Univ Fed ABC UFABC, Ctr Math Comp & Cognit CMCC, R Santa Adelia 166, BR-09210170 Santo Andre, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Symbolic regression; Interaction-transformation; Extreme learning machines; SELECTION;
D O I
10.1016/j.neucom.2020.10.062
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Symbolic Regression searches for a mathematical expression that fits the input data set by minimizing the approximation error. The search space explored by this technique is composed of any mathematical function representable as an expression tree. This provides more flexibility for fitting the data but it also makes the task more challenging. The search space induced by this representation becomes filled with redundancy and ruggedness, sometimes requiring a higher computational budget in order to achieve good results. Recently, a new representation for Symbolic Regression was proposed, called Interaction Transformation, which can represent function forms as a composition of interactions between predictors and the application of a single transformation function. In this work, we show how this representation can be modeled as a multi-layer neural network with the weights adjusted following the Extreme Learning Machine procedure. The results show that this approach is capable of finding equally good or better results than the current state-of-the-art with a smaller computational cost. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:609 / 619
页数:11
相关论文
共 50 条
  • [31] An Enhanced Extreme Learning Machine Based on Liu Regression
    Hasan Yıldırım
    M. Revan Özkale
    Neural Processing Letters, 2020, 52 : 421 - 442
  • [32] Mixture Regression Estimation based on Extreme Learning Machine
    Mao, Wentao
    Wang, Yali
    Cao, Xizheng
    Zheng, Yanbin
    JOURNAL OF COMPUTERS, 2013, 8 (11) : 2925 - 2933
  • [33] Two-stage extreme learning machine for regression
    Lan, Yuan
    Soh, Yeng Chai
    Huang, Guang-Bin
    NEUROCOMPUTING, 2010, 73 (16-18) : 3028 - 3038
  • [34] Evolutionary selection extreme learning machine optimization for regression
    Feng, Guorui
    Qian, Zhenxing
    Zhang, Xinpeng
    SOFT COMPUTING, 2012, 16 (09) : 1485 - 1491
  • [35] Parallel extreme learning machine for regression based on MapReduce
    He, Qing
    Shang, Tianfeng
    Zhuang, Fuzhen
    Shi, Zhongzhi
    NEUROCOMPUTING, 2013, 102 : 52 - 58
  • [36] Bidirectional Extreme Learning Machine for Regression Problem and Its Learning Effectiveness
    Yang, Yimin
    Wang, Yaonan
    Yuan, Xiaofang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (09) : 1498 - 1505
  • [37] Affine Transformation Based Hierarchical Extreme Learning Machine
    Ma, Rongzhi
    Cao, Jiuwen
    Wang, Tianlei
    Lai, Xiaoping
    2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [38] Extreme learning machine based pattern classifiers for symbolic interval data
    Emami N.
    Kuchaki Rafsanjani M.
    International Journal of Engineering, Transactions B: Applications, 2021, 34 (11): : 2545 - 2556
  • [39] Extreme Learning Machine Based Pattern Classifiers for Symbolic Interval Data
    Emami, N.
    Rafsanjani, M. Kuchaki
    INTERNATIONAL JOURNAL OF ENGINEERING, 2021, 34 (11): : 2545 - 2555
  • [40] Machine learning of Kondo physics using variational autoencoders and symbolic regression
    Miles, Cole
    Carbone, Matthew R.
    Sturm, Erica J.
    Lu, Deyu
    Weichselbaum, Andreas
    Barros, Kipton
    Konik, Robert M.
    PHYSICAL REVIEW B, 2021, 104 (23)