High-dimensional structured light coding/decoding for free-space optical communications free of obstructions

被引:131
|
作者
Du, Jing [1 ]
Wang, Jian [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
ORBITAL-ANGULAR-MOMENTUM; TRANSMISSION; SYSTEM; MODES; BEAMS;
D O I
10.1364/OL.40.004827
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Bessel beams carrying orbital angular momentum (OAM) with helical phase fronts exp(il phi) (l = 0; +/- 1; +/- 2; ...), where phi is the azimuthal angle and l corresponds to the topological number, are orthogonal with each other. This feature of Bessel beams provides a new dimension to code/decode data information on the OAM state of light, and the theoretical infinity of topological number enables possible high-dimensional structured light coding/decoding for free-space optical communications. Moreover, Bessel beams are nondiffracting beams having the ability to recover by themselves in the face of obstructions, which is important for free-space optical communications relying on line-of-sight operation. By utilizing the OAM and nondiffracting characteristics of Bessel beams, we experimentally demonstrate 12 m distance obstruction-free optical m-ary coding/decoding using visible Bessel beams in a free-space optical communication system. We also study the bit error rate (BER) performance of hexadecimal and 32-ary coding/decoding based on Bessel beams with different topological numbers. After receiving 500 symbols at the receiver side, a zero BER of hexadecimal coding/decoding is observed when the obstruction is placed along the propagation path of light. (C) 2015 Optical Society of America
引用
收藏
页码:4827 / 4830
页数:4
相关论文
共 50 条
  • [31] Fast steering mirrors manipulate light for free-space optical communications and beyond
    Vorndran, Stefan
    LASER FOCUS WORLD, 2024, 60 (11-12): : 30 - 32
  • [32] Reed-Solomon Coding for Free-Space Optical Communications Through Turbulent Atmosphere
    Zhao, Zhijun
    Liao, Rui
    Lyke, Stephen D.
    Roggemann, Michael C.
    2010 IEEE AEROSPACE CONFERENCE PROCEEDINGS, 2010,
  • [34] Optics in Space Free-space optical communications and final frontier
    Boas, Gary
    PHOTONICS SPECTRA, 2009, 43 (11) : 44 - 45
  • [35] MPPM Constellation Selection for Free-Space Optical Communications
    Trung Thanh Nguyen
    Lampe, Lutz
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2012, 60 (03) : 632 - 636
  • [36] Deep learning for enhanced free-space optical communications
    Bart, M. P.
    Savino, N. J.
    Regmi, P.
    Cohen, L.
    Safavi, H.
    Shaw, H. C.
    Lohani, S.
    Searles, T. A.
    Kirby, B. T.
    Lee, H.
    Glasser, R. T.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (04):
  • [37] Laser Guide Stars for Optical Free-Space Communications
    Calvo, Ramon Mata
    Calia, Domenico Bonaccini
    Barrios, Ricardo
    Centrone, Mauro
    Giggenbach, Dirk
    Lombardi, Gianluca
    Becker, Peter
    Zayer, Igor
    FREE-SPACE LASER COMMUNICATION AND ATMOSPHERIC PROPAGATION XXIX, 2017, 10096
  • [38] Free-Space Optical MISO Communications With an Array of Detectors
    Bashir, Muhammad Salman
    Alouini, Mohamed-Slim
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2020, 1 (01): : 1765 - 1780
  • [39] A Transmission Control Protocol for Free-Space Optical Communications
    Hasegawa, Yohei
    GLOBECOM 2017 - 2017 IEEE GLOBAL COMMUNICATIONS CONFERENCE, 2017,
  • [40] Free-Space Optical Communications with Generalized Pointing Errors
    Yang, Fan
    Cheng, Julian
    Tsiftsis, Theodoros A.
    2013 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2013, : 3943 - +