Electrochemical sensor based on molecularly imprinted polymer/reduced graphene oxide composite for simultaneous determination of uric acid and tyrosine

被引:101
|
作者
Zheng, Weihua [1 ]
Zhao, Min [1 ]
Liu, Weifen [1 ]
Yu, Shangmin [1 ]
Niu, Liting [1 ]
Li, Gengen [1 ]
Li, Haifeng [1 ]
Liu, Weilu [1 ]
机构
[1] Shenyang Pharmaceut Univ, Sch Pharm, Shenyang 110016, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Molecularly imprinted polymer; Reduced graphene oxide; 2-amino-5-mercapto-1; 3; 4-thiadiazole; Uric acid; Tyrosine; GLASSY-CARBON ELECTRODE; BIOLOGICAL-FLUIDS; COPOLYMER; DOPAMINE; POLYMERS; FILMS;
D O I
10.1016/j.jelechem.2018.02.022
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This work reported a molecularly imprinted polymer (MIP)/reduced graphene oxide (RGO) composite for simultaneous determination of uric acid and tyrosine. The MW layer was electropolymerized on the RGO modified electrode using a novel monomer of 2-amino-5-mercapto-1, 3, 4-thiadiazole and the dual template of uric acid and tyrosine. The integration of MIP with RGO resulted in the regular nanostructure and large surface area of the sensing interface. The sensing mechanism of the sensor can be explained by first recognizing the target molecules and then catalyzing the oxidation reactions on the MIP/RGO composite. The, electrochemical behavior of uric acid and tyrosine on the MIP/RGO composite was evaluated. Influencing factors, including the electropolymerization scanning cycles, monomer/template ratio, and pH values were optimized. Under the optimal condition, the sensor exhibits wide linear ranges for uric acid (0.01 mu M-100 mu M) and tyrosine (0.1 mu M-400 mu M) with detection limits of 0.0032 mu M and 0.046 mu M, respectively. In addition, this MIP/RGO composite was applied to detect uric acid and tyrosine in serum and urine samples.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 50 条
  • [31] Simultaneous and sensitive determination of ascorbic acid, dopamine and uric acid via an electrochemical sensor based on PVP-graphene composite
    Wu, Yiyong
    Deng, Peihong
    Tian, Yaling
    Feng, Jinxia
    Xiao, Jingyun
    Li, Junhua
    Liu, Jun
    Li, Guangli
    He, Quanguo
    JOURNAL OF NANOBIOTECHNOLOGY, 2020, 18 (01)
  • [32] Molecularly Imprinted Electrochemical Sensor for Determination of Cholesterol Based on Signal Amplification of Graphene
    Bai Hui-Ping
    Wang Chun-Qiong
    Cao Qiu-E
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2017, 45 (10) : 1535 - 1541
  • [33] Electrochemical sensing of methylmalonic acid based on molecularly imprinted polymer modified with graphene oxide and gold nanoparticles
    Deepa, J. R.
    Anirudhan, T. S.
    Soman, Gowri
    Sekhar, V. Chithra
    MICROCHEMICAL JOURNAL, 2020, 159
  • [34] An electrochemical sensor based on reduced graphene oxide/β-cyclodextrin/multiwall carbon nanotubes/polyoxometalate tetracomponent hybrid: Simultaneous determination of ascorbic acid, dopamine and uric acid
    Ma, Chaonan
    Xu, Pingping
    Chen, Hongzhong
    Cui, Jing
    Guo, Minjie
    Zhao, Jin
    MICROCHEMICAL JOURNAL, 2022, 180
  • [35] A novel electrochemical sensor based on a molecularly imprinted polymer for the determination of epigallocatechin gallate
    Liu, Yanrui
    Zhu, Lili
    Hu, Yue
    Peng, Xinsheng
    Du, Jiangyan
    FOOD CHEMISTRY, 2017, 221 : 1128 - 1134
  • [36] A novel electrochemical sensor based on electropolymerized molecularly imprinted polymer for determination of luteolin
    Wei, Meiting
    Geng, Xue
    Liu, Yanrui
    Long, Hongyan
    Du, Jiangyan
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 842 : 184 - 192
  • [37] Molecularly imprinted polymer based electrochemical sensor for the determination of the anthelmintic drug oxfendazole
    Radi, Abd-Elgawad
    El-Naggar, Abd-Elrahman
    Nassef, Hossam M.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2014, 729 : 135 - 141
  • [38] Determination of Diuron by Using Electrochemical Sensor Based on Molecularly Imprinted Polymer Film
    Ondes, Baha
    Soysal, Mert
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (06) : B395 - B401
  • [39] Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid
    Sheng, Zhen-Huan
    Zheng, Xiao-Qing
    Xu, Jian-Yun
    Bao, Wen-Jing
    Wang, Feng-Bin
    Xia, Xing-Hua
    BIOSENSORS & BIOELECTRONICS, 2012, 34 (01): : 125 - 131
  • [40] Electrochemical sensor for dodecyl gallate determination based on electropolymerized molecularly imprinted polymer
    Pedroso, Mariele Mucio
    Foguel, Marcos Vinicius
    Siqueira Silva, Dulce Helena
    Taboada Sotomayor, Maria del Pilar
    Yamanaka, Hideko
    SENSORS AND ACTUATORS B-CHEMICAL, 2017, 253 : 180 - 186