Simultaneous feature selection and classification for relevance feedback in image retrieval

被引:0
|
作者
Prasanna, R [1 ]
Ramakrishnan, KR
Bhattacharyya, C
机构
[1] Indian Inst Sci, Dept Elect Engn, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci, Dept Comp Sci & Automat, Bangalore 560012, Karnataka, India
关键词
D O I
10.1109/TENCON.2003.1273230
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In image retrieval, relevance feedback uses information, obtained interactively from the user, to understand the user's perceptions of a query image and to improve retrieval accuracy. We propose simultaneous relevant feature selection and classification using the samples provided by the user to improve retrieval accuracy. The classifier is defined by a separating hyperplane, while the sparse weight vector characterizing the hyperplane defines a small set of relevant features. This set of relevant features is used for classification and can be used for analysis at a later stage. Mutually exclusive sets of images are shown to the user at each iteration to obtain maximum information from the user. Experimental results show that our algorithm performs better than feature weighting, feature selection and classification schemes.
引用
收藏
页码:576 / 580
页数:5
相关论文
共 50 条
  • [41] Fuzzy Relevance Feedback in Image Retrieval for Color Feature Using Query Vector Modification Method
    Widyanto, M. Rahmat
    Maftukhah, Tatik
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2010, 14 (01) : 34 - 38
  • [42] Biased Discriminant Analysis With Feature Line Embedding for Relevance Feedback-Based Image Retrieval
    Wang, Yu-Chen
    Han, Chin-Chuan
    Hsieh, Chen-Ta
    Chen, Ying-Nong
    Fan, Kuo-Chin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2015, 17 (12) : 2245 - 2258
  • [43] Sketch retrieval and relevance feedback with biased SVM classification
    Liang, Shuang
    Sun, Zhengxing
    PATTERN RECOGNITION LETTERS, 2008, 29 (12) : 1733 - 1741
  • [44] The Use of Unlabeled Data in Image Retrieval with Relevance Feedback
    Radosavljevic, Vladan
    Kojic, Nenad
    Zajic, Goran
    Rejin, Branimir
    NEUREL 2008: NINTH SYMPOSIUM ON NEURAL NETWORK APPLICATIONS IN ELECTRICAL ENGINEERING, PROCEEDINGS, 2008, : 20 - +
  • [45] An efficient memorization scheme for relevance feedback in image retrieval
    Zhang, L
    Qian, F
    Li, MJ
    Zhang, HJ
    2003 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL I, PROCEEDINGS, 2003, : 313 - 316
  • [46] A Probabilistic Model for User Relevance Feedback on Image Retrieval
    Paredes, Roberto
    Deselaers, Thornas
    Vidal, Enrique
    MACHINE LEARNING FOR MULTIMODAL INTERACTION, PROCEEDINGS, 2008, 5237 : 260 - +
  • [47] CIRCULAR RELEVANCE FEEDBACK FOR REMOTE SENSING IMAGE RETRIEVAL
    Tang, Xu
    Zhang, Xiangrong
    Liu, Fang
    Jiao, Licheng
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8953 - 8956
  • [48] Comparative Analysis of Relevance Feedback Techniques for Image Retrieval
    Vadicamo, Lucia
    Scotti, Francesca
    Dearle, Alan
    Connor, Richard
    MULTIMEDIA MODELING, MMM 2025, PT I, 2025, 15520 : 206 - 219
  • [49] Gaussian mixture model for Relevance Feedback in image retrieval
    Qian, F
    Li, MJ
    Zhang, L
    Zhang, HJ
    Zhang, B
    IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL I AND II, PROCEEDINGS, 2002, : 229 - 232
  • [50] Semantic based image retrieval using relevance feedback
    Ion, Anca Loredana
    Stanescu, Liana
    Burdescu, Dan
    EUROCON 2007: THE INTERNATIONAL CONFERENCE ON COMPUTER AS A TOOL, VOLS 1-6, 2007, : 1661 - 1668