Groundwater Prediction Using Machine-Learning Tools

被引:63
|
作者
Hussein, Eslam A. [1 ]
Thron, Christopher [2 ]
Ghaziasgar, Mehrdad [1 ]
Bagula, Antoine [1 ]
Vaccari, Mattia [3 ]
机构
[1] Univ Western Cape, Dept Comp Sci, ZA-7535 Cape Town, South Africa
[2] Univ Cent Texas, Dept Sci & Math, Killeen, TX 76549 USA
[3] Univ Western Cape, Dept Phys & Astron, ZA-7535 Cape Town, South Africa
基金
新加坡国家研究基金会;
关键词
time series data; pixel estimation; full image prediction; gaussian mixture model; global features; feature engineering; square root transformation; WATER; UNCERTAINTY; MANAGEMENT; LEVEL; MODEL; ROOT; ANN;
D O I
10.3390/a13110300
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predicting groundwater availability is important to water sustainability and drought mitigation. Machine-learning tools have the potential to improve groundwater prediction, thus enabling resource planners to: (1) anticipate water quality in unsampled areas or depth zones; (2) design targeted monitoring programs; (3) inform groundwater protection strategies; and (4) evaluate the sustainability of groundwater sources of drinking water. This paper proposes a machine-learning approach to groundwater prediction with the following characteristics: (i) the use of a regression-based approach to predict full groundwater images based on sequences of monthly groundwater maps; (ii) strategic automatic feature selection (both local and global features) using extreme gradient boosting; and (iii) the use of a multiplicity of machine-learning techniques (extreme gradient boosting, multivariate linear regression, random forests, multilayer perceptron and support vector regression). Of these techniques, support vector regression consistently performed best in terms of minimizing root mean square error and mean absolute error. Furthermore, including a global feature obtained from a Gaussian Mixture Model produced models with lower error than the best which could be obtained with local geographical features.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Prediction of hemophilia A severity using a small-input machine-learning framework
    Lopes, Tiago J. S.
    Rios, Ricardo
    Nogueira, Tatiane
    Mello, Rodrigo F.
    NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2021, 7 (01)
  • [32] Prediction of Fatty Liver Disease in a Chinese Population Using Machine-Learning Algorithms
    Weng, Shuwei
    Hu, Die
    Chen, Jin
    Yang, Yanyi
    Peng, Daoquan
    DIAGNOSTICS, 2023, 13 (06)
  • [33] Prediction of Progressive Frost Damage Development of Concrete Using Machine-Learning Algorithms
    ul Haq, Muhammad Atasham
    Xu, Wencheng
    Abid, Muhammad
    Gong, Fuyuan
    BUILDINGS, 2023, 13 (10)
  • [34] Inpatient stroke rehabilitation: prediction of clinical outcomes using a machine-learning approach
    Harari, Yaar
    O'Brien, Megan K.
    Lieber, Richard L.
    Jayaraman, Arun
    JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2020, 17 (01)
  • [35] Prediction of chronic damage in systemic lupus erythematosus by using machine-learning models
    Ceccarelli, Fulvia
    Sciandrone, Marco
    Perricone, Carlo
    Galvan, Giulio
    Morelli, Francesco
    Vicente, Luis Nunes
    Leccese, Ilaria
    Massaro, Laura
    Cipriano, Enrica
    Spinelli, Francesca Romana
    Alessandri, Cristiano
    Valesini, Guido
    Conti, Fabrizio
    PLOS ONE, 2017, 12 (03):
  • [36] Training machine-learning potentials for crystal structure prediction using disordered structures
    Hong, Changho
    Choi, Jeong Min
    Jeong, Wonseok
    Kang, Sungwoo
    Ju, Suyeon
    Lee, Kyeongpung
    Jung, Jisu
    Youn, Yong
    Han, Seungwu
    PHYSICAL REVIEW B, 2020, 102 (22)
  • [37] PREDICTION OF CHRONIC DAMAGE IN SYSTEMIC LUPUS ERYTHEMATOSUS BY USING MACHINE-LEARNING MODELS
    Ceccarelli, F.
    Sciandrone, M.
    Perricone, C.
    Galvan, G.
    Morelli, F.
    Vicente, L. N.
    Leccese, I.
    Massaro, L.
    Cipriano, E.
    Spinelli, F. R.
    Alessandri, C.
    Valesini, G.
    Conti, F.
    ANNALS OF THE RHEUMATIC DISEASES, 2017, 76 : 1449 - 1449
  • [38] Prediction of fast neutron spectra with a spherical TEPC using a machine-learning algorithm
    Antoni, Rodolphe
    Allinei, Pierre-Guy
    Bourgois, Laurent
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2023, 1050
  • [39] Inpatient stroke rehabilitation: prediction of clinical outcomes using a machine-learning approach
    Yaar Harari
    Megan K. O’Brien
    Richard L. Lieber
    Arun Jayaraman
    Journal of NeuroEngineering and Rehabilitation, 17
  • [40] Prediction of hemophilia A severity using a small-input machine-learning framework
    Tiago J. S. Lopes
    Ricardo Rios
    Tatiane Nogueira
    Rodrigo F. Mello
    npj Systems Biology and Applications, 7