A Markov Random Fields model for hybrid edge- and region-based color image segmentation

被引:4
|
作者
Wesolkowski, S [1 ]
Fieguth, P [1 ]
机构
[1] Univ Waterloo, Waterloo, ON N2L 3G1, Canada
来源
IEEE CCEC 2002: CANADIAN CONFERENCE ON ELECTRCIAL AND COMPUTER ENGINEERING, VOLS 1-3, CONFERENCE PROCEEDINGS | 2002年
关键词
D O I
10.1109/CCECE.2002.1013070
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a framework based on a Markov Random Field approach for color image segmentation enhanced by edge detection is presented, We use a previously developed methodology to transform the image into an R'G'B' space to remove any highlight components preserving the vector-angle component, representing color hue but not intensity, to remove shading effects. To improve the segmentation process we describe the idea of a line process. This allows for the integration of region segmentation with edge detection in a Markov Random Field framework. We discuss the advantages of this new model with respect to the previously developed image segmentation model.
引用
收藏
页码:945 / 949
页数:3
相关论文
共 50 条
  • [11] Medical Image Segmentation Based on a Hybrid Region-Based Active Contour Model
    Liu, Tingting
    Xu, Haiyong
    Jin, Wei
    Liu, Zhen
    Zhao, Yiming
    Tian, Wenzhe
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2014, 2014
  • [12] A region Markov random field model with integrated edge feature and image segmentation algorithm
    MOE Key Lab for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an 710049, China
    不详
    Han, J., 1600, Xi'an Jiaotong University (48):
  • [13] Examining edge- and region-based texture analysis mechanisms
    Wolfson, SS
    Landy, MS
    VISION RESEARCH, 1998, 38 (03) : 439 - 446
  • [14] Markov Random Fields in Image Segmentation
    Kato, Zoltan
    Zerubia, Josiane
    FOUNDATIONS AND TRENDS IN SIGNAL PROCESSING, 2011, 5 (1-2): : 1 - 155
  • [15] Learning a color distance metric for region-based image segmentation
    Sobieranski, Antonio C.
    Abdala, Daniel D.
    Comunello, Eros
    von Wangenheim, Aldo
    PATTERN RECOGNITION LETTERS, 2009, 30 (16) : 1496 - 1506
  • [16] MULTITEMPORAL REGION-BASED CLASSIFICATION OF HIGH-RESOLUTION IMAGES BY MARKOV RANDOM FIELDS AND MULTISCALE SEGMENTATION
    Moser, Gabriele
    Serpico, Sebastiano B.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 102 - 105
  • [17] Voronoi region-based adaptive unsupervised color image segmentation
    Hettiarachchi, R.
    Peters, J. F.
    PATTERN RECOGNITION, 2017, 65 : 119 - 135
  • [18] Region-based Deformable Net for automatic color image segmentation
    Shaaban, Khaled M.
    Omar, Nagwa M.
    IMAGE AND VISION COMPUTING, 2009, 27 (10) : 1504 - 1514
  • [19] Medical Image Segmentation Hybrid Algorithm Based on Otsu Method and Markov Random Fields
    Ludwiczuk, R.
    Mikolajczak, P.
    ELECTROMAGNETIC FIELD, HEALTH AND ENVIRONMENT, PROCEEDINGS OF EHE '07, 2008, 29 : 198 - +
  • [20] Preserving objects in Markov Random Fields region growing image segmentation
    Dawoud, Amer
    Netchaev, Anton
    PATTERN ANALYSIS AND APPLICATIONS, 2012, 15 (02) : 155 - 161