Connectivity-based multiple-circle fitting

被引:26
|
作者
Qiao, Y [1 ]
Ong, SH [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 119260, Singapore
关键词
circle detection; pixel connectivity; robustness; least-squares method; outlier; validity criterion; hough transform;
D O I
10.1016/j.patcog.2003.08.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a connectivity-based method for circle fitting. The use of pixel connectivity effectively avoids false circle detection, improves the robustness against noise and significantly reduces the computational load. The desired circular models are extracted by searching for meaningful circular arcs. The algorithm does not require a good initial guess, and is effective for extracting an a priori unknown number of circles even when the number of outliers exceeds 50%. The experimental results demonstrate that the proposed method performs well in detecting multiple intersecting or occluded circles. (C) 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:755 / 765
页数:11
相关论文
共 50 条
  • [31] Connectivity-based parcellation of Broca's area
    Anwander, A.
    Tittgemeyer, M.
    von Cramon, D. Y.
    Friederici, A. D.
    Knoesche, T. R.
    CEREBRAL CORTEX, 2007, 17 (04) : 816 - 825
  • [32] From Innovation to Entrepreneurship: Connectivity-based Regional Development
    Hall, Joshua C.
    REVIEW OF REGIONAL STUDIES, 2021, 51 (01) : 105 - 107
  • [33] Identification of autism spectrum disorder using multiple functional connectivity-based graph convolutional network
    Ma, Chaoran
    Li, Wenjie
    Ke, Sheng
    Lv, Jidong
    Zhou, Tiantong
    Zou, Ling
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2024, 62 (07) : 2133 - 2144
  • [34] Connectivity-based parcellation of the thalamus in multiple sclerosis and its implications for cognitive impairment: a multicenter study
    Bisecco, A.
    Rocca, M. A.
    Pagani, E.
    Mancini, L.
    Enzinger, C.
    Gallo, A.
    Vrenken, H.
    Stromillo, M. L.
    Copetti, M.
    Thomas, D.
    Fazekas, F.
    Tedeschi, G.
    Barkhof, F.
    De Stefano, N.
    Filippi, M.
    EUROPEAN JOURNAL OF NEUROLOGY, 2015, 22 : 898 - 899
  • [35] Connectivity-based parcellation of the thalamus in multiple sclerosis and its implications for cognitive impairment: A multicenter study
    Bisecco, Alvino
    Rocca, Maria A.
    Pagani, Elisabetta
    Mancini, Laura
    Enzinger, Christian
    Gallo, Antonio
    Vrenken, Hugo
    Stromillo, Maria Laura
    Copetti, Massimiliano
    Thomas, David L.
    Fazekas, Franz
    Tedeschi, Gioacchino
    Barkhof, Frederik
    De Stefano, Nicola
    Filippi, Massimo
    HUMAN BRAIN MAPPING, 2015, 36 (07) : 2809 - 2825
  • [36] Multiple-subjects connectivity-based parcellation using hierarchical Dirichlet process mixture models
    Jbabdi, S.
    Woolrich, M. W.
    Behrens, T. E. J.
    NEUROIMAGE, 2009, 44 (02) : 373 - 384
  • [37] An iterative connectivity-based localization algorithm for sensor networks
    Xiang Mantian
    Shi Haoshan
    Li Lihong
    ICEMI 2007: PROCEEDINGS OF 2007 8TH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOL IV, 2007, : 81 - +
  • [38] CBPtools: a Python package for regional connectivity-based parcellation
    Niels Reuter
    Sarah Genon
    Shahrzad Kharabian Masouleh
    Felix Hoffstaedter
    Xiaojin Liu
    Tobias Kalenscher
    Simon B. Eickhoff
    Kaustubh R. Patil
    Brain Structure and Function, 2020, 225 : 1261 - 1275
  • [39] Functional Organization of the Human Posterior Cingulate Cortex, Revealed by Multiple Connectivity-Based Parcellation Methods
    Cha, Jungho
    Jo, Hang Joon
    Gibson, William S.
    Lee, Jong-Min
    HUMAN BRAIN MAPPING, 2017, 38 (06) : 2808 - 2818
  • [40] Functional connectivity-based parcellation of the human sensorimotor cortex
    Long, Xiangyu
    Goltz, Dominique
    Margulies, Daniel S.
    Nierhaus, Till
    Villringer, Arno
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2014, 39 (08) : 1332 - 1342