DMFT Reveals the Non-Hermitian Topology and Fermi Arcs in Heavy-Fermion Systems

被引:74
|
作者
Nagai, Yuki [1 ,2 ]
Qi, Yang [2 ,3 ]
Isobe, Hiroki [2 ]
Kozii, Vladyslav [2 ,4 ,5 ]
Fu, Liang [2 ]
机构
[1] Japan Atom Energy Agcy, CCSE, 178-4-4 Wakashiba, Kashiwa, Chiba 2770871, Japan
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
[3] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[4] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[5] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
关键词
Perturbation techniques - Topology - Electrons - Mean field theory;
D O I
10.1103/PhysRevLett.125.227204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
When a strongly correlated system supports well-defined quasiparticles, it allows for an elegant one-body effective description within the non-Hermitian topological theory. While the microscopic many-body Hamiltonian of a closed system remains Hermitian, the one-body quasiparticle Hamiltonian is non-Hermitian due to the finite quasiparticle lifetime. We use such a non-Hermitian description in the heavy-fermion two-dimensional systems with the momentum-dependent hybridization to reveal a fascinating phenomenon which can be directly probed by the spectroscopic measurements, the bulk "Fermi arcs." Starting from a simple two-band model, we first combine the phenomenological approach with the perturbation theory to show the existence of the Fermi arcs and reveal their connection to the topological exceptional points, special points in the Brillouin zone where the Hamiltonian is nondiagonalizable. The appearance of such points necessarily requires that the electrons belonging to different orbitals have different lifetimes. This requirement is naturally satisfied in the heavy-fermion systems, where the itinerant c electrons experience much weaker interaction than the localized f electrons. We then utilize the dynamical mean field theory to numerically calculate the spectral function and confirm our findings. We show that the concept of the exceptional points in the non-Hermitian quasiparticle Hamiltonians is a powerful tool for predicting new phenomena in strongly correlated electron systems.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Fermi-surface topology of the heavy-fermion system Ce2PtIn8
    Klotz, J.
    Goetze, K.
    Green, E. L.
    Demuer, A.
    Shishido, H.
    Ishida, T.
    Harima, H.
    Wosnitza, J.
    Sheikin, I.
    PHYSICAL REVIEW B, 2018, 97 (16)
  • [42] Non-Hermitian Skin Effect in Non-Hermitian Optical Systems
    Zhang, Yingqiu
    Wei, Zhongchao
    LASER & PHOTONICS REVIEWS, 2025, 19 (01)
  • [43] Symmetry and Topology in Non-Hermitian Physics
    Kawabata, Kohei
    Shiozaki, Ken
    Ueda, Masahito
    Sato, Masatoshi
    PHYSICAL REVIEW X, 2019, 9 (04)
  • [44] FERMI-SURFACE ANISOTROPIES IN HEAVY-FERMION SUPERCONDUCTORS
    RAUCHSCHWALBE, U
    STEGLICH, F
    SPARN, G
    BREDL, CD
    FULDE, P
    MAKI, K
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1987, 26 : 1225 - 1226
  • [45] Non-Hermitian Boundary Modes and Topology
    Borgnia, Dan S.
    Kruchkov, Alex Jura
    Slager, Robert-Jan
    PHYSICAL REVIEW LETTERS, 2020, 124 (05)
  • [46] Non-Hermitian Ferromagnetism in an Ultracold Fermi Gas
    Tajima, Hiroyuki
    Iida, Kei
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2021, 90 (02)
  • [47] FERROMAGNETIC PROPERTIES OF HEAVY-FERMION SYSTEMS
    ZHUANG, M
    XIAO, MW
    LI, ZZ
    SOLID STATE COMMUNICATIONS, 1995, 94 (09) : 771 - 776
  • [48] Supersymmetric approach to heavy-fermion systems
    Pepin, C
    Lavagna, M
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1997, 103 (02): : 259 - 261
  • [49] Unconventional superconductivity in heavy-fermion systems
    Kitaoka, Y
    Kawasaki, S
    Mito, T
    Kawasaki, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (01) : 186 - 199
  • [50] Nonmagnetic impurities in heavy-fermion systems
    Wermbter, S
    Wermbter, K
    Czycholl, G
    PHYSICA B, 1997, 230 : 463 - 465