Game total domination for cyclic bipartite graphs

被引:8
|
作者
Jiang, Yisheng [1 ]
Lu, Mei [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
Domination game; Total domination number; Cyclic bipartite graph; FAMILIES; TREES;
D O I
10.1016/j.dam.2019.03.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a graph. A vertex u in G totally dominates a vertex v if u is adjacent to v in G. The total domination game played on G consists of two players, named Dominator and Staller, who alternately take turns choosing vertices of G such that each chosen vertex totally dominates at least one vertex not totally dominated by the vertices previously chosen. Dominator wishes to totally dominate the graph as fast as possible, while Staller wishes to delay the process as much as possible. The game total domination number gamma(tg)(G) (resp. the Staller-start game total domination number gamma(tg)'(G)) of G is the number of vertices chosen when Dominator starts the game (resp. when Staller starts the game) and both players play optimally. In this paper, we determine the exact value of gamma(tg)(G) and gamma(tg)'(G) when G is a cyclic bipartite graph. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:120 / 127
页数:8
相关论文
共 50 条
  • [31] Independence and 2-domination in bipartite graphs
    Fujisawa, Jun
    Hansberg, Adriana
    Kub, Takahiro
    Saito, Akira
    Sugita, Masahide
    Volkmann, Lutz
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2008, 40 : 265 - 268
  • [32] A note on the independent domination number versus the domination number in bipartite graphs
    Shaohui Wang
    Bing Wei
    Czechoslovak Mathematical Journal, 2017, 67 : 533 - 536
  • [33] A note on the independent domination number versus the domination number in bipartite graphs
    Wang, Shaohui
    Wei, Bing
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2017, 67 (02) : 533 - 536
  • [34] ON THE TOTAL DOMINATION NUMBEROF TOTAL GRAPHS
    Cabrera-Martinez, Abel
    Sanchez, Jose L.
    Sigarreta Almira, Jose M.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (03) : 933 - 951
  • [35] Total Domination Versus Domination in Cubic Graphs
    Joanna Cyman
    Magda Dettlaff
    Michael A. Henning
    Magdalena Lemańska
    Joanna Raczek
    Graphs and Combinatorics, 2018, 34 : 261 - 276
  • [36] Domination and Total Domination Contraction Numbers of Graphs
    Huang, Jia
    Xu, Jun-Ming
    ARS COMBINATORIA, 2010, 94 : 431 - 443
  • [37] On the cyclic decomposition of circulant graphs into bipartite graphs
    Bunge, Ryan C.
    El-Zanati, Saad I.
    Rumsey, Chepina
    Eynden, Charles Vanden
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2013, 56 : 201 - 217
  • [38] On graphs with equal total domination and Grundy total domination numbers
    Dravec, Tanja
    Jakovac, Marko
    Kos, Tim
    Marc, Tilen
    AEQUATIONES MATHEMATICAE, 2022, 96 (01) : 137 - 146
  • [39] Total Roman domination and total domination in unit disk graphs
    Rout, Sasmita
    Mishra, Pawan Kumar
    Das, Gautam Kumar
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [40] On graphs with equal total domination and Grundy total domination numbers
    Tanja Dravec
    Marko Jakovac
    Tim Kos
    Tilen Marc
    Aequationes mathematicae, 2022, 96 : 137 - 146