Hilfer-Katugampola fractional derivatives

被引:114
|
作者
Oliveira, D. S. [1 ]
Capelas de Oliveira, E. [1 ]
机构
[1] Imecc Unicamp, Dept Appl Math, BR-13083859 Campinas, SP, Brazil
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2018年 / 37卷 / 03期
关键词
Generalized fractional integral; Hilfer-Katugampola fractional derivative; Fractional differential equation; Volterra integral equation;
D O I
10.1007/s40314-017-0536-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new fractional derivative, the Hilfer-Katugampola fractional derivative. Motivated by the Hilfer derivative this formulation interpolates the well-known fractional derivatives of Hilfer, Hilfer-Hadamard, Riemann-Liouville, Hadamard, Caputo, Caputo-Hadamard, Liouville, Weyl, generalized and Caputo-type. As an application, we consider a nonlinear fractional differential equation with an initial condition using this new formulation. We show that this equation is equivalent to a Volterra integral equation and demonstrate the existence and uniqueness of solution to the nonlinear initial value problem.
引用
收藏
页码:3672 / 3690
页数:19
相关论文
共 50 条
  • [31] Results on Katugampola Fractional Derivatives and Integrals
    Jebril, Iqbal H.
    El-Khatib, Mohammed S.
    Abubaker, Ahmad A.
    Al-Shaikh, Suha B.
    Batiha, Iqbal M.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2023, 21
  • [32] EXISTENCE AND CONTINUATION OF SOLUTIONS OF HILFER-KATUGAMPOLA-TYPE FRACTIONAL DIFFERENTIAL EQUATIONS
    Salamooni, Ahmad Y. A.
    Pawar, D. D.
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2021, 13 (03): : 257 - 279
  • [33] Hilfer-Katugampola序列分数阶微分方程边值问题Lyapunov型不等式
    王林
    董蝴蝶
    陈港
    数学的实践与认识, 2023, 53 (07) : 197 - 205
  • [34] Ulam stability for nonlocal differential equations involving the Hilfer–Katugampola fractional derivative
    Mouffak Benchohra
    Soufyane Bouriah
    Johnny Henderson
    Afrika Matematika, 2021, 32 : 829 - 851
  • [35] Hilfer-Katugampola序列分数阶微分方程多点混合边值问题Lyapunov型不等式
    董蝴蝶
    王林
    陈港
    倪晋波
    淮阴师范学院学报(自然科学版), 2023, 22 (01) : 1 - 8
  • [36] Using the Hilfer–Katugampola fractional derivative in initial-value Mathieu fractional differential equations with application to a particle in the plane
    Amel Berhail
    Nora Tabouche
    Jehad Alzabut
    Mohammad Esmael Samei
    Advances in Continuous and Discrete Models, 2022
  • [37] On Katugampola fractional order derivatives and Darboux problem for differential equations
    Boucenna, Djalal
    Ben Makhlouf, Abdellatif
    Hammami, Mohamed Ali
    CUBO-A MATHEMATICAL JOURNAL, 2020, 22 (01): : 125 - 136
  • [38] Stability analysis for boundary value problems with generalized nonlocal condition via Hilfer–Katugampola fractional derivative
    Idris Ahmed
    Poom Kumam
    Fahd Jarad
    Piyachat Borisut
    Kanokwan Sitthithakerngkiet
    Alhassan Ibrahim
    Advances in Difference Equations, 2020
  • [39] Hilfer-Katugampola型隐式分数阶模糊微分方程解的存在唯一性
    帕力旦·吾斯曼
    顾海波
    新疆师范大学学报(自然科学版), 2024, 43 (04) : 53 - 61
  • [40] An operational calculus approach to Hilfer–Prabhakar fractional derivatives
    Arran Fernandez
    Noosheza Rani
    Živorad Tomovski
    Banach Journal of Mathematical Analysis, 2023, 17