Design of Hierarchical Three-Dimensional Printed Scaffolds Considering Mechanical and Biological Factors for Bone Tissue Engineering

被引:49
|
作者
Egan, Paul F. [1 ]
Ferguson, Stephen J. [2 ]
Shea, Kristina [3 ]
机构
[1] Swiss Fed Inst Technol, Dept Hlth Sci & Technol, Honggerbergring 64, CH-8093 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Inst Biomech, Dept Hlth Sci & Technol, Honggerbergring 64, CH-8093 Zurich, Switzerland
[3] Swiss Fed Inst Technol, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland
关键词
INTERVERTEBRAL CAGES; LUMBAR SPINE; FABRICATION; POROSITY; VASCULARIZATION; OPTIMIZATION; ARCHITECTURE; TRANSLATION; DEGRADATION; GEOMETRY;
D O I
10.1115/1.4036396
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Computational approaches have great potential for aiding clinical product development by finding promising candidate designs prior to expensive testing and clinical trials. Here, an approach for designing multilevel bone tissue scaffolds that provide structural support during tissue regeneration is developed by considering mechanical and biological perspectives. Three key scaffold design properties are considered: (1) porosity, which influences potential tissue growth volume and nutrient transport, (2) surface area, which influences biodegradable scaffold dissolution rate and initial cell attachment, and (3) elastic modulus, which influences scaffold deformation under load and, therefore, tissue stimulation. Four scaffold topology types are generated by patterning beam or truss-based unit cells continuously or hierarchically and tuning the element diameter, unit cell length, and number of unit cells. Parametric comparisons suggest that structures with truss-based scaffolds have higher surface areas but lower elastic moduli for a given porosity in comparison to beam-based scaffolds. Hierarchical scaffolds possess a large central pore that increases porosity but lowers elastic moduli and surface area. Scaffold samples of all topology types are 3D printed with dimensions suitable for scientific testing. A hierarchical scaffold is fabricated with dimensions and properties relevant for a spinal interbody fusion cage with a maximized surface-volume ratio, which illustrates a potentially high performing design configured for mechanical and biological factors. These findings demonstrate the merit in using multidisciplinary and computational approaches as a foundation of tissue scaffold development for regenerative medicine.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Three dimensional printed nanostructure biomaterials for bone tissue engineering
    Marew, Tesfa
    Birhanu, Gebremariam
    REGENERATIVE THERAPY, 2021, 18 : 102 - 111
  • [42] Three-dimensional porcine kidney scaffolds for renal tissue engineering
    Bonandrini, B.
    Figliuzzi, M.
    Rosati, M.
    Silvani, S.
    Morigi, M.
    Benigni, A.
    Remuzzi, G.
    Remuzzi, A.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2014, 8 : 110 - 110
  • [43] Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering
    Lu, Tingli
    Li, Yuhui
    Chen, Tao
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2013, 8 : 337 - 350
  • [44] Three-dimensional fibrous scaffolds with microstructures and nanotextures for tissue engineering
    Ng, Robin
    Zang, Ru
    Yang, Kevin K.
    Liu, Ning
    Yang, Shang-Tian
    RSC ADVANCES, 2012, 2 (27) : 10110 - 10124
  • [45] Heparinized hydroxyapatite/collagen three-dimensional scaffolds for tissue engineering
    Teixeira, S.
    Yang, L.
    Dijkstra, P. J.
    Ferraz, M. P.
    Monteiro, F. J.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2010, 21 (08) : 2385 - 2392
  • [46] Heparinized hydroxyapatite/collagen three-dimensional scaffolds for tissue engineering
    S. Teixeira
    L. Yang
    P. J. Dijkstra
    M. P. Ferraz
    F. J. Monteiro
    Journal of Materials Science: Materials in Medicine, 2010, 21 : 2385 - 2392
  • [47] Three-dimensional reconstituted extracellular matrix scaffolds for tissue engineering
    Narayanan, Karthikeyan
    Leck, Kwong-Joo
    Gao, Shujun
    Wan, Andrew C. A.
    BIOMATERIALS, 2009, 30 (26) : 4309 - 4317
  • [48] Porous three-dimensional carbon nanotube scaffolds for tissue engineering
    Lalwani, Gaurav
    Gopalan, Anu
    D'Agati, Michael
    Sankaran, Jeyantt Srinivas
    Judex, Stefan
    Qin, Yi-Xian
    Sitharaman, Balaji
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2015, 103 (10) : 3212 - 3225
  • [49] Three-dimensional printing of β-tricalcium phosphate/calcium silicate composite scaffolds for bone tissue engineering
    Yifan Dong
    Haibo Duan
    Naru Zhao
    Xiao Liu
    Yijuan Ma
    Xuetao Shi
    Bio-DesignandManufacturing, 2018, 1 (02) : 146 - 156
  • [50] Three-dimensional printing of β-tricalcium phosphate/calcium silicate composite scaffolds for bone tissue engineering
    Yifan Dong
    Haibo Duan
    Naru Zhao
    Xiao Liu
    Yijuan Ma
    Xuetao Shi
    Bio-Design and Manufacturing, 2018, (02) : 146 - 156