Geometry-induced oscillations of finite bubbles in microchannels

被引:6
|
作者
Jisiou, M. [1 ]
Dawson, G. [1 ]
Thompson, A. B. [1 ]
Mohr, S. [2 ]
Fielden, P. R. [2 ,3 ]
Hazel, A. L. [1 ]
Juel, A. [1 ]
机构
[1] Univ Manchester, Manchester Ctr Nonlinear Dynam, Oxford Rd, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Sch Chem Engn & Analyt Sci, Manchester M60 1QD, Lancs, England
[3] Univ Lancaster, Dept Chem, Lancaster LA1 4YB, England
基金
英国工程与自然科学研究理事会;
关键词
Microfluidics; Two-phase flow; Oscillating bubbles; Symmetry-breaking; STEADY PROPAGATION; LONG BUBBLES; MOTION; TUBE; CAPILLARIES; CHIP; LAB;
D O I
10.1016/j.piutam.2014.01.050
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We characterise novel propagation modes that occur when semi-infinite air fingers and finite air bubbles displace viscous fluid from microchannels. The presence of an axially-uniform rectangular occlusion within a rectangular cross-section leads to a multiplicity of modes, in contrast to the single symmetric mode present in unoccluded channels. For air fingers, the asymmetric(1), oscillatory(2) and localised modes(3) first identified in millimetric channels persist at the micron-scale, confirming that significant gravitational effects are not necessary to support these states. Sufficiently large finite bubbles exhibit analogous modes with quantitatively similar flow measures, indicating that the physical mechanisms supporting the propagation modes of finite bubbles are the same as those identified for the air fingers(4). In contrast to the air fingers, in which oscillations are always initiated near the finger tip and propagate backwards, oscillations in finite bubbles can arise from either end of the bubble. (C) 2013 The Authors. Published by Elsevier B.V.
引用
收藏
页码:81 / 88
页数:8
相关论文
共 50 条
  • [11] Geometry-induced patterns through mechanochemical coupling
    Wuerthner, Laeschkir
    Goychuk, Andriy
    Frey, Erwin
    PHYSICAL REVIEW E, 2023, 108 (01)
  • [12] Micropipette Geometry-Induced Electrostatic Trapping of Nanoparticles
    Tuna, Yazgan
    Kim, Ji-Tae
    Liu, Hsuan-Wei
    Sandoghdar, Vahid
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 354A - 355A
  • [13] Geometry-induced fractal behaviour in a semiconductor billiard
    Micolich, AP
    Taylor, RP
    Newbury, R
    Bird, JP
    Wirtz, R
    Dettmann, CP
    Aoyagi, Y
    Sugano, T
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (06) : 1339 - 1347
  • [14] Geometry-Induced Bursting Dynamics in Gene Expression
    Meyer, B.
    Benichou, O.
    Kafri, Y.
    Voituriez, R.
    BIOPHYSICAL JOURNAL, 2012, 102 (09) : 2186 - 2191
  • [15] Geometry-induced wave-function collapse
    Ye, Li -Li
    Han, Chen -Di
    Huang, Liang
    Lai, Ying-Cheng
    PHYSICAL REVIEW A, 2022, 106 (02)
  • [16] Geometry-induced fractal behaviour in a semiconductor billiard
    J Phys Condens Matter, 6 (1339-1347):
  • [17] Geometry-Induced Superdiffusion in Driven Crowded Systems
    Benichou, Olivier
    Bodrova, Anna
    Chakraborty, Dipanjan
    Illien, Pierre
    Law, Adam
    Mejia-Monasterio, Carlos
    Oshanin, Gleb
    Voituriez, Raphael
    PHYSICAL REVIEW LETTERS, 2013, 111 (26)
  • [18] A new model of geometry-induced stochastic resonance
    Zheng, Chunming
    Guo, Wei
    Du, Luchun
    Mei, Dongcheng
    EPL, 2014, 105 (06)
  • [19] Geometry-induced charge separation on a helicoidal ribbon
    Atanasov, Victor
    Dandoloff, Rossen
    Saxena, Avadh
    PHYSICAL REVIEW B, 2009, 79 (03)
  • [20] Geometry-induced nonequilibrium phase transition in sandpiles
    Najafi, M. N.
    Cheraghalizadeh, J.
    Lukovic, M.
    Herrmann, H. J.
    PHYSICAL REVIEW E, 2020, 101 (03)