On L1 endpoint Kato-Ponce inequality

被引:0
|
作者
Oh, Seungly [1 ]
Wu, Xinfeng [2 ]
机构
[1] Western New England Univ, Dept Math, Springfield, MA 01119 USA
[2] China Univ Min & Technol Beijing, Dept Math, Beijing 100083, Peoples R China
关键词
SMOOTHING PROPERTIES; WELL-POSEDNESS; LEBESGUE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the following endpoint Kato-Ponce inequality holds: parallel to D-s (fg)parallel to (L) (q/q+1(Rn)) less than or similar to parallel to D-s f parallel to(L1(Rn))parallel to g parallel to(Lq(Rn)) +||f parallel to(L1(Rn))parallel to D(s)g parallel to(Lq(Rn)), for all 1 <= q <= infinity, provided s > n/q or s is an element of 2N. Endpoint estimates for several variants of Kato-Ponce inequality in mixed norm Lebesgue spaces are also presented. Our results complement and improve some existing results.
引用
收藏
页码:1129 / 1163
页数:35
相关论文
共 50 条
  • [41] IMBEDDING OF L1 IN L1/H1
    BOURGAIN, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 294 (18): : 633 - 636
  • [42] SPECTRUM OF (L1 AND L1)(R+)
    PAPACOSTAS, GC
    BULLETIN DE LA CLASSE DES SCIENCES ACADEMIE ROYALE DE BELGIQUE, 1979, 65 (10): : 545 - 554
  • [43] Smoothing approximation to l1 exact penalty function for inequality constrained optimization
    Lian, Shu-jun
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (06) : 3113 - 3121
  • [44] L1
    Hammer, Kate
    LANGUAGE AND COGNITION, 2018, 10 (02) : 266 - 297
  • [45] An elementary proof of an inequality of Maz'ya involving L1 vector fields
    Bousquet, Pierre
    Mironescu, Petru
    NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS, 2011, 540 : 59 - +
  • [46] TENSOR NORMS ON L1(N) BY L1(N)
    COHEN, JS
    STEPHENS, AB
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A350 - A350
  • [47] PROJECTIONS ONTO L1 SUBSPACES OF L1 (MU)
    ALSPACH, DE
    JOHNSON, WB
    LECTURE NOTES IN MATHEMATICS, 1983, 995 : 1 - 7
  • [48] Image restoration based on L1 + L1 model
    Liu, Ruihua
    International Journal of Signal Processing, Image Processing and Pattern Recognition, 2014, 7 (05) : 273 - 286
  • [49] NA(L(nl1 : l1))=NRA(L(nl1:l1))
    Kim, Sung Guen
    ACTA SCIENTIARUM MATHEMATICARUM, 2022, 88 (3-4): : 769 - 775
  • [50] Ideals in L(L1)
    Johnson, W. B.
    Pisier, G.
    Schechtman, G.
    MATHEMATISCHE ANNALEN, 2020, 376 (1-2) : 693 - 705