EQUIVARIANT PRINCIPAL BUNDLES AND LOGARITHMIC CONNECTIONS ON TORIC VARIETIES

被引:4
|
作者
Biswas, Indranil [1 ]
Dey, Arijit [2 ]
Poddar, Mainak [3 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Homi Bhabha Rd, Mumbai 400005, Maharashtra, India
[2] Indian Inst Technol, Dept Math, Madras 600036, Tamil Nadu, India
[3] Univ Los Andes, Dept Math, Bogota, Colombia
关键词
smooth toric variety; logarithmic connection; equivariant principal bundle; REDUCTION;
D O I
10.2140/pjm.2016.280.315
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a smooth complex projective toric variety equipped with an action of a torus T, such that the complement D of the open T-orbit in M is a simple normal crossing divisor. Let G be a complex reductive affine algebraic group. We prove that an algebraic principal G-bundle E-G -> M admits a T-equivariant structure if and only if E-G admits a logarithmic connection singular over D. If E-H -> M is a T-equivariant algebraic principal H-bundle, where H is any complex affine algebraic group, then E-H in fact has a canonical integrable logarithmic connection singular over D.
引用
收藏
页码:315 / 325
页数:11
相关论文
共 50 条
  • [21] Equivariant Burnside groups and toric varieties
    Kresch, Andrew
    Tschinkel, Yuri
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (05) : 3013 - 3039
  • [22] Equivariant Chow cohomology of toric varieties
    Payne, S
    MATHEMATICAL RESEARCH LETTERS, 2006, 13 (01) : 29 - 41
  • [23] Equivariant embeddings into smooth toric varieties
    Hausen, J
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (03): : 554 - 570
  • [24] Equivariant Burnside groups and toric varieties
    Andrew Kresch
    Yuri Tschinkel
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 3013 - 3039
  • [25] Toric co-Higgs bundles on toric varieties
    Biswas, Indranil
    Dey, Arijit
    Poddar, Mainak
    Rayan, Steven
    ILLINOIS JOURNAL OF MATHEMATICS, 2021, 65 (01) : 181 - 190
  • [26] Logarithmic stable toric varieties and their moduli
    Ascher, Kenneth
    Malcho, Samouil
    ALGEBRAIC GEOMETRY, 2016, 3 (03): : 296 - 319
  • [27] On equivariant Serre problem for principal bundles
    Biswas, Indranil
    Dey, Arijit
    Poddar, Mainak
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (09)
  • [28] Equivariant principal bundles and their classifying spaces
    Lueck, Wolfgang
    Uribe, Bernardo
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (04): : 1925 - 1995
  • [29] Graded rings and equivariant sheaves on toric varieties
    Perling, M
    MATHEMATISCHE NACHRICHTEN, 2004, 263 : 181 - 197
  • [30] The equivariant K-theory of toric varieties
    Au, Suanne
    Huang, Mu-Wan
    Walker, Mark E.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (05) : 840 - 845