Schwarz Lemma at the Boundary on the Classical Domain of Type II

被引:0
|
作者
Tang, Xiaomin [1 ]
Liu, Taishun [1 ]
Zhang, Wenjun [2 ]
机构
[1] Huzhou Univ, Dept Math, Huzhou 313000, Zhejiang, Peoples R China
[2] Shenzhen Univ, Dept Math, Shenzhen 518060, Guangdong, Peoples R China
关键词
Holomorphic mapping; Schwarz lemma at the boundary; The classical domain of type II; BIHOLOMORPHIC CONVEX MAPPINGS; WEAKLY PSEUDOCONVEX DOMAINS; C-N; THEOREM;
D O I
10.1007/s12220-017-9880-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R-II(n) be the classical domain of type II. We first obtain a sufficient and necessary condition such that the boundary points of R-II(n) are smooth. We then establish a new type of the classical boundary Schwarz lemma for holomorphic self-mappings of R-II(n).
引用
收藏
页码:1610 / 1634
页数:25
相关论文
共 50 条
  • [21] The Schwarz lemma at the boundary of the symmetrized bidisc
    Tu, Zhenhan
    Zhang, Shuo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 459 (01) : 182 - 202
  • [22] Uniqueness Part of the Schwarz Lemma at the Boundary
    Ornek, Bulent Nafi
    Akyel, Tugba
    FILOMAT, 2017, 31 (12) : 3643 - 3650
  • [23] SHARPENED FORMS OF THE SCHWARZ LEMMA ON THE BOUNDARY
    Ornek, Bulent Nafi
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (06) : 2053 - 2059
  • [24] Some Remarks on Schwarz Lemma at the Boundary
    Akyel, Tugba
    Ornek, Bulent Nafi
    FILOMAT, 2017, 31 (13) : 4139 - 4151
  • [25] Boundary Schwarz Lemma for Holomorphic Functions
    Ornek, Bulent Nafi
    Gok, Burcu
    FILOMAT, 2017, 31 (18) : 5553 - 5565
  • [26] A Schwarz Lemma at the Boundary of Hilbert Balls
    Zhihua Chen
    Yang Liu
    Yifei Pan
    Chinese Annals of Mathematics, Series B, 2018, 39 : 695 - 704
  • [27] A Schwarz lemma for a domain related to μ-synthesis
    Abouhajar, A. A.
    White, M. C.
    Young, N. J.
    JOURNAL OF GEOMETRIC ANALYSIS, 2007, 17 (04) : 717 - 750
  • [28] A Schwarz lemma for a domain related to μ-synthesis
    A. A. Abouhajar
    M. C. White
    N. J. Young
    The Journal of Geometric Analysis, 2007, 17 : 717 - 750
  • [29] A Schwarz-type lemma for noncompact manifolds with boundary and geometric applications
    Albanese, Guglielmo
    Rigoli, Marco
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2017, 25 (04) : 719 - 749
  • [30] THE SCHWARZ LEMMA AND ITS APPLICATION AT A BOUNDARY POINT
    Jeong, Moonja
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2014, 21 (03): : 219 - 227