Einstein Field Equation, Recursion Operators, Noether and Master Symmetries in Conformable Poisson Manifolds

被引:1
|
作者
Hounkonnou, Mahouton Norbert [1 ,2 ]
Landalidji, Mahougnon Justin [1 ,2 ]
Mitrovic, Melanija [1 ,2 ,3 ]
机构
[1] Univ Abomey Calavi, Int Chair Math Phys & Applicat ICMPA UNESCO Chair, 072 BP 50, Cotonou, Benin
[2] Int Ctr Res & Adv Studies Math & Comp Sci & Appli, 072 BP 50, Cotonou, Benin
[3] Univ Nis, Fac Mech Engn CAM FMEN, Ctr Appl Math, A Medvedeva 14, Nish 18000, Serbia
关键词
Einstein field equation; recursion operator; Noether symmetry; master symmetry; conformable differential; Poisson manifold; SUPERINTEGRABILITY; INTEGRALS; DYNAMICS; SYSTEM;
D O I
10.3390/universe8040247
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that a Minkowski phase space endowed with a bracket relatively to a conformable differential realizes a Poisson algebra, confering a bi-Hamiltonian structure to the resulting manifold. We infer that the related Hamiltonian vector field is an infinitesimal Noether symmetry, and compute the corresponding deformed recursion operator. Besides, using the Hamiltonian-Jacobi separability, we construct recursion operators for Hamiltonian vector fields in conformable Poisson-Schwarzschild and Friedmann-Lemaitre-Robertson-Walker (FLRW) manifolds, and derive the related constants of motion, Christoffel symbols, components of Riemann and Ricci tensors, Ricci constant and components of Einstein tensor. We highlight the existence of a hierarchy of bi-Hamiltonian structures in both the manifolds, and compute a family of recursion operators and master symmetries generating the constants of motion.
引用
收藏
页数:27
相关论文
共 21 条