On the Parameter Determination of a Stress relaxation model based on Creep equations using Differential Evolution Algorithm

被引:2
|
作者
Zhang, Wei-wei [1 ]
Xu, Hong [1 ]
机构
[1] North China Elect Power Univ, Sch Energy Power & Mech Engn, Beijing, Peoples R China
关键词
Differential Evolution; Parameter Determination; Creep; Stress Relaxation; GLOBAL OPTIMIZATION;
D O I
10.4028/www.scientific.net/AMM.441.476
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A robust and efficient parameter identification method of the stress relaxation model based on Altenbach-Gorash-Naumenko creep equations is discussed. The differential evolution (DE) algorithm with a modified forward-Euler scheme is used in the identification procedure. Besides its good convergence properties and suitability for parallelization, initial guesses close to the solutions are not required for the DE algorithm. The parameter determination problem of the stress relaxation model is based on a very broad range specified for each parameter. The performance of the proposed DE algorithm is compared with a step-by-step model parameter determination technology and the genetic algorithm (GA). The model parameters of 12Cr-1Mo-1W-1/4V stainless steel bolting material at 550 degrees C have been determined, and the creep and stress relaxation behaviors have been calculated. Results indicate that the optimum solutions can be obtained more easily by DE algorithm than others.
引用
收藏
页码:476 / 479
页数:4
相关论文
共 50 条
  • [31] Parameter identification of an SOFC model with an efficient, adaptive differential evolution algorithm
    Gong, Wenyin
    Cai, Zhihua
    Yang, Jie
    Li, Xi
    Jian, Li
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (10) : 5083 - 5096
  • [32] Creep based stress relaxation damage model for high temperature components
    Guo, Jin-Quan
    Xuan, Fu-Zhen
    Wang, Zheng-Dong
    Tu, Shan-Dong
    Hedongli Gongcheng/Nuclear Power Engineering, 2009, 30 (04): : 9 - 12
  • [33] Reliability Analysis Using Artificial Neural Network Based Adaptive Parameter Differential Evolution Algorithm
    Bui, N. T.
    Nguyen, T. T.
    Nguyen, V. T.
    Tao, N. L.
    Bui, N. T.
    Hasegawa, H.
    PROCEEDINGS OF 2020 3RD INTERNATIONAL CONFERENCE ON ROBOT SYSTEMS AND APPLICATIONS, ICRSA2020, 2020, : 88 - 93
  • [34] Parameter identification of chaotic systems using improved differential evolution algorithm
    Ho, Wen-Hsien
    Chou, Jyh-Horng
    Guo, Ching-Yi
    NONLINEAR DYNAMICS, 2010, 61 (1-2) : 29 - 41
  • [35] PARAMETER IDENTIFICATION OF A HYBRID REDUNDANT ROBOT BY USING DIFFERENTIAL EVOLUTION ALGORITHM
    Wang, Yongbo
    Wu, Huapeng
    Handroos, Heikki
    ICINCO 2009: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 2: ROBOTICS AND AUTOMATION, 2009, : 287 - 292
  • [36] Constrained Real-Parameter Optimization using a Differential Evolution Algorithm
    Brest, J.
    Zamuda, A.
    Fister, I.
    Boskovic, B.
    Maucec, M. Sepesy
    2011 IEEE SYMPOSIUM ON DIFFERENTIAL EVOLUTION (SDE), 2011, : 9 - 16
  • [37] Parameter identification of chaotic systems using improved differential evolution algorithm
    Wen-Hsien Ho
    Jyh-Horng Chou
    Ching-Yi Guo
    Nonlinear Dynamics, 2010, 61 : 29 - 41
  • [38] Multiobjective Differential Evolution Algorithm with Opposition-Based Parameter Control
    Leung, Shing Wa
    Zhang, Xin
    Yuen, Shiu Yin
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [39] Model-based Balancing Method of Rotors using Differential Evolution Algorithm
    Zhang, Yun
    Li, Meng
    Hu, Yang
    2019 5TH INTERNATIONAL CONFERENCE ON MECHANICAL AND AERONAUTICAL ENGINEERING (ICMAE 2019), 2020, 751
  • [40] Differential evolution algorithm with dichotomy-based parameter space compression
    Laizhong Cui
    Genghui Li
    Zexuan Zhu
    Zhong Ming
    Zhenkun Wen
    Nan Lu
    Soft Computing, 2019, 23 : 3643 - 3660