How contact stiffness and density determine stress-dependent elastic moduli: a micromechanics approach

被引:10
|
作者
Chung, Choong-Ki [1 ]
Jang, Eui-Ryong [2 ]
Baek, Sung-Ha [1 ]
Jung, Young-Hoon [3 ]
机构
[1] Seoul Natl Univ, Dept Civil & Environm Engn, Seoul 151744, South Korea
[2] Hyungdai Engn & Construct Co Ltd, Civil & Environm Engn & Design Grp, Seoul 110920, South Korea
[3] Kyung Hee Univ, Coll Engn, Dept Civil Engn, Yongin 446401, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
Elastic shear stiffness; Contact model; Coordination number; Anisotropy parameter; Small-strain cyclic test; Discrete element simulation; DEFORMATION; BEHAVIOR;
D O I
10.1007/s10035-013-0456-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To investigate the origin of the stress-level dependency of soil elasticity, a series of stress-path experiments were simulated for loose and dense soil specimens with three different contact surfaces. In the discrete element analyses, an assumption was introduced in which the contact body had the geometry of an elastic sphere with local, axi-symmetric irregularity. To evaluate the cross-anisotropic elastic shear moduli, small-strain cyclic shear tests were simulated under stress conditions along four stress-probing paths. For dense specimens with high coordination numbers, the internal structure was represented by the degree of fabric anisotropy and the coordination number remained unchanged during shearing, thus leading to the coincidence of the sum of the exponents in the contact stiffness model. For the loose specimens with low coordination numbers, the fabric structure evolved continuously during shearing, which resulted in the increase of the exponents in the power function of the elastic modulus. The rearrangement of particles and the transition of contact-force chains, along with the evolution of the fabric, manifested as increasing dependency of the elastic moduli on the stresses in such loose specimens.
引用
收藏
页码:23 / 39
页数:17
相关论文
共 50 条
  • [41] Stress-dependent elastic properties of shales-laboratory experiments at seismic and ultrasonic frequencies
    Szewczyk, Dawid
    Bauer, Andreas
    Holt, Rune M.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2018, 212 (01) : 189 - 210
  • [42] Stress-dependent reflection and transmission of elastic waves under confining, uniaxial, and pure shear prestresses
    Yang, Haidi
    Fu, Li-Yun
    Muller, Tobias M.
    Fu, Bo-Ye
    GEOPHYSICS, 2024, 89 (04) : T163 - T182
  • [43] Nano-Indentation to Determine Mechanical Properties of Intraocular Lenses: Evaluating Penetration Depth, Material Stiffness, and Elastic Moduli
    Borkenstein, Andreas F.
    Borkenstein, Eva-Maria
    Muehlbacher, Inge
    Flock, Michaela
    OPHTHALMOLOGY AND THERAPY, 2023, 12 (04) : 2087 - 2101
  • [44] Stress-dependent behavior and rutting resistance of modified asphalt binders: An MSCR approach
    Behnood, Ali
    Olek, Jan
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 157 : 635 - 646
  • [45] Stress-dependent dynamic compliance spectra approach to the nonlinear viscoelastic response of polymers
    Armstrong, WD
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1998, 36 (13) : 2301 - 2309
  • [46] Nano-Indentation to Determine Mechanical Properties of Intraocular Lenses: Evaluating Penetration Depth, Material Stiffness, and Elastic Moduli
    Andreas F. Borkenstein
    Eva-Maria Borkenstein
    Inge Mühlbacher
    Michaela Flock
    Ophthalmology and Therapy, 2023, 12 : 2087 - 2101
  • [47] A Connectivity Metrics-Based Approach for the Prediction of Stress-Dependent Fracture Permeability
    Deng, Qinglin
    Shang, Xueyi
    He, Ping
    WATER, 2024, 16 (05)
  • [48] A GENERALIZED FRACTAL-BASED APPROACH FOR STRESS-DEPENDENT PERMEABILITY OF POROUS ROCKS
    Miao, Tongjun
    Chen, Aimin
    Yang, Xiaoya
    Yu, Boming
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (01)
  • [49] Material stiffness optimization for contact stress distribution in frictional elastic contact problems with multiple load cases
    Zhou, Yicong
    Lin, Qiyin
    Yang, Xihao
    Hong, Jun
    Zhang, Ningjing
    Zhao, Fu
    INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN, 2021, 17 (03) : 503 - 519
  • [50] Material stiffness optimization for contact stress distribution in frictional elastic contact problems with multiple load cases
    Yicong Zhou
    Qiyin Lin
    Xihao Yang
    Jun Hong
    Ningjing Zhang
    Fu Zhao
    International Journal of Mechanics and Materials in Design, 2021, 17 : 503 - 519