A new class of oscillatory radial basis functions

被引:45
|
作者
Fornberg, B.
Larsson, E.
Wright, G.
机构
[1] Univ Colorado, Dept Math Appl, Boulder, CO 80309 USA
[2] Uppsala Univ, Dept Informat Technol Sci Comp, SE-75105 Uppsala, Sweden
[3] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
radial basis functions; RBF; multivariate interpolation; Bessel functions;
D O I
10.1016/j.camwa.2006.04.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Radial basis functions (RBFs) form a primary tool for multivariate interpolation, and they are also receiving increased attention for solving PDEs on irregular domains. Traditionally, only nonoscillatory radial functions have been considered. We find here that a certain class of oscillatory radial functions (including Gaussians as a special case) leads to nonsingular interpolants with intriguing features especially as they are scaled to become increasingly flat. This flat limit is important in that it generalizes traditional spectral methods to completely general node layouts. Interpolants based on the new radial functions appear immune to many or possibly all cases of divergence that in this limit can arise with other standard types of radial functions (such as multiquadrics and inverse multiquadratics). (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1209 / 1222
页数:14
相关论文
共 50 条
  • [31] Wavelets, fractals, and radial basis functions
    Blu, T
    Unser, M
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (03) : 543 - 553
  • [32] Radial Basis Functions: a Bayesian treatment
    Barber, D
    Schottky, B
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 10, 1998, 10 : 402 - 408
  • [33] Trefftz radial basis functions (TRBF)
    Kompis, V.
    Stiavnicky, M.
    Zmindak, M.
    Murcinkova, Z.
    PROCEEDINGS OF LSAME.08: LEUVEN SYMPOSIUM ON APPLIED MECHANICS IN ENGINEERING, PTS 1 AND 2, 2008, : 25 - 35
  • [34] Radial Basis Functions for Phase Unwrapping
    Villa Hernandez, Jesus
    de la Rosa Vargas, Ismael
    de la Rosa Miranda, Enrique
    COMPUTACION Y SISTEMAS, 2010, 14 (02): : 145 - 150
  • [35] Rapid evaluation of radial basis functions
    Roussos, G
    Baxter, BJC
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 180 (01) : 51 - 70
  • [36] Gradient Descent and Radial Basis Functions
    Fernandez-Redondo, Mercedes
    Torres-Sospedra, Joaquin
    Hernandez-Espinosa, Carlos
    INTELLIGENT COMPUTING, PART I: INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, ICIC 2006, PART I, 2006, 4113 : 391 - 396
  • [37] Smoothing and interpolation with radial basis functions
    Myers, DE
    BOUNDARY ELEMENT TECHNOLOGY XIII: INCORPORATING COMPUTATIONAL METHODS AND TESTING FOR ENGINEERING INTEGRITY, 1999, 2 : 365 - 374
  • [38] Almost interpolation and radial basis functions
    Le Méhauté, A
    MODERN DEVELOPMENTS IN MULTIVARIATE APPROXIMATION, 2003, 145 : 203 - 214
  • [39] Image decomposition by radial basis functions
    Andersen, JD
    IMAGE ANALYSIS, PROCEEDINGS, 2003, 2749 : 749 - 754
  • [40] Solving PDEs with radial basis functions
    Fornberg, Bengt
    Flyer, Natasha
    ACTA NUMERICA, 2015, 24 : 215 - 258