Single-Molecule Analysis of mtDNA Replication Uncovers the Basis of the Common Deletion

被引:94
|
作者
Phillips, Aaron F. [1 ]
Millet, Armel R. [2 ,3 ]
Tigano, Marco [1 ]
Dubois, Sonia M. [2 ]
Crimmins, Hannah [1 ]
Babin, Loelia [2 ,3 ]
Charpentier, Marine [2 ]
Piganeau, Marion [2 ]
Brunet, Erika [2 ,3 ]
Sfeir, Agnel [1 ]
机构
[1] NYU, Sch Med, Dept Cell Biol, Skirball Inst Biomol Med, New York, NY 10016 USA
[2] Museum Natl Hist Nat, Struct & Instabilite Genomes, INSERM, CNRS,U1154,UMR 7196, F-75005 Paris, France
[3] Inst Imagine, INSERM, UMR 1163, Genome Dynam Immune Syst Lab, F-75015 Paris, France
关键词
HUMAN MITOCHONDRIAL-DNA; PROGRESSIVE EXTERNAL OPHTHALMOPLEGIA; DOUBLE-STRAND BREAKS; LAGGING-STRAND; DIRECT REPEATS; LIGASE III; SACCHAROMYCES-CEREVISIAE; MAMMALIAN MITOCHONDRIA; OXIDATIVE STRESS; 4977-BP DELETION;
D O I
10.1016/j.molcel.2016.12.014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mutations in mtDNA lead to muscular and neurological diseases and are linked to aging. The most frequent aberrancy is the "common deletion'' that involves a 4,977-bp region flanked by 13-bp repeats. To investigate the basis of this deletion, we developed a single-molecule mtDNA combing method. The analysis of replicating mtDNA molecules provided in vivo evidence in support of the asymmetric mode of replication. Furthermore, we observed frequent fork stalling at the junction of the common deletion, suggesting that impaired replication triggers the formation of this toxic lesion. In parallel experiments, we employed mito-TALENs to induce breaks in distinct loci of the mitochondrial genome and found that breaks adjacent to the 5' repeat trigger the common deletion. Interestingly, this process was mediated by the mitochondrial replisome independent of canonical DSB repair. Altogether, our data underscore a unique replication-dependent repair pathway that leads to the mitochondrial common deletion.
引用
收藏
页码:527 / +
页数:18
相关论文
共 50 条
  • [41] Aerolysin Nanopores for Single-Molecule Analysis
    Zhang, Yun
    Cao, Chan
    CHIMIA, 2025, 79 (1-2) : 18 - 24
  • [42] Microarray Analysis at Single-Molecule Resolution
    Muresan, Leila
    Jacak, Jaroslaw
    Klement, Erich Peter
    Hesse, Jan
    Schuetz, Gerhard J.
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2010, 9 (01) : 51 - 58
  • [43] Fast analysis of single-molecule data
    Strack, Rita
    NATURE METHODS, 2020, 17 (06) : 564 - 564
  • [44] Fast analysis of single-molecule data
    Rita Strack
    Nature Methods, 2020, 17 : 564 - 564
  • [45] Quantitative Aspects of Single-Molecule Microscopy [Information-theoretic analysis of single-molecule data]
    Ober, Raimund J.
    Tahmasbi, Amir
    Ram, Sripad
    Lin, Zhiping
    Ward, Elizabeth Sally
    IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (01) : 58 - 69
  • [46] Simple Autofocusing System for Single-Molecule FRET Experiment Based on Single-Molecule Image Analysis
    Hwang, Wonseok
    Bae, Sangsu
    Hohng, Sungchol
    BIOPHYSICAL JOURNAL, 2013, 104 (02) : 515A - 515A
  • [47] Heterogeneity in bacterial surface polysaccharides, probed on a single-molecule basis
    Camesano, TA
    Abu-Lail, NI
    BIOMACROMOLECULES, 2002, 3 (04) : 661 - 667
  • [48] Single-Molecule Imaging Uncovers Rules Governing Nonsense-Mediated mRNA Decay
    Hoek, Tim A.
    Khuperkar, Deepak
    Lindeboom, Rik G. H.
    Sonneveld, Stijn
    Verhagen, Bram M. P.
    Boersma, Sanne
    Vermeulen, Michiel
    Tanenbaum, Marvin E.
    MOLECULAR CELL, 2019, 75 (02) : 324 - +
  • [49] Multi-Color Single-Molecule Imaging Uncovers Extensive Heterogeneity in mRNA Decoding
    Boersma, Sanne
    Khuperkar, Deepak
    Verhagen, Bram M. P.
    Sonneveld, Stijn
    Grimm, Jonathan B.
    Lavis, Luke D.
    Tanenbaum, Marvin E.
    CELL, 2019, 178 (02) : 458 - +
  • [50] Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus
    Pasero, P
    Bensimon, A
    Schwob, E
    GENES & DEVELOPMENT, 2002, 16 (19) : 2479 - 2484