Estimating local intrinsic dimension with k-nearest neighbor graphs

被引:0
|
作者
Costa, Jose A. [1 ]
Girotra, Abhishek [1 ]
Hero, Alfred O., III [1 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
关键词
manifold learning; intrinsic dimension; nearest; neighbor graph;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Many high-dimensional data sets of practical interest exhibit a varying complexity in different parts of the data space. This is the case, for example, of databases of images containing many samples of a few textures of different complexity. Such phenomena can be modeled by assuming, that the data lies on a collection of manifolds with different intrinsic dimensionalities. In this extended abstract, we introduce a method to estimate the local dimensionality associated with each point in a data set, without any prior information about the manifolds, their quantity and their sampling distributions. The proposed method uses a global dimensionality estimator based on k-nearest neighbor (k-NN) graphs, together with an algorithm for computing neighborhoods in the data with similar topological properties.
引用
收藏
页码:379 / 383
页数:5
相关论文
共 50 条
  • [41] Asymptotics of k-nearest Neighbor Riesz Energies
    Hardin, Douglas P.
    Saff, Edward B.
    Vlasiuk, Oleksandr
    CONSTRUCTIVE APPROXIMATION, 2024, 59 (02) : 333 - 383
  • [42] EVOLVING EDITED k-NEAREST NEIGHBOR CLASSIFIERS
    Gil-Pita, Roberto
    Yao, Xin
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2008, 18 (06) : 459 - 467
  • [44] Multiview Adaptive K-Nearest Neighbor Classification
    School of Science, East China Jiaotong University, Nanchang
    330013, China
    不详
    330013, China
    不详
    IEEE. Trans. Artif. Intell., 2024, 3 (1221-1234): : 1221 - 1234
  • [45] A novel ensemble method for k-nearest neighbor
    Zhang, Youqiang
    Cao, Guo
    Wang, Bisheng
    Li, Xuesong
    PATTERN RECOGNITION, 2019, 85 : 13 - 25
  • [46] FUZZY K-NEAREST NEIGHBOR ALGORITHM.
    Keller, James M.
    Gray, Michael R.
    Givens, James A.
    IEEE Transactions on Systems, Man and Cybernetics, 1985, SMC-15 (04): : 580 - 585
  • [47] Efficient reverse k-nearest neighbor estimation
    Achtert, Elke
    Boehm, Christian
    Kroeger, Peer
    Kunath, Peter
    Pryakhin, Alexey
    Renz, Matthias
    COMPUTER SCIENCE-RESEARCH AND DEVELOPMENT, 2007, 21 (3-4): : 179 - 195
  • [48] An optimal k-nearest neighbor for density estimation
    Kung, Yi-Hung
    Lin, Pei-Sheng
    Kao, Cheng-Hsiung
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (10) : 1786 - 1791
  • [49] Enhanced Weighted K-nearest Neighbor Positioning
    Li, Xinze
    Al-Tous, Hanan
    Hajri, Salah Eddine
    Tirkkonen, Olav
    2024 IEEE 99TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2024-SPRING, 2024,
  • [50] Privacy preserving K-nearest neighbor classification
    Zhan, Justin
    Chang, Li Wu
    Matwin, Stan
    International Journal of Network Security, 2005, 1 (01) : 46 - 51