Twitter sentiment mining: A multi domain analysis

被引:8
|
作者
Shahheidari, Saeideh [1 ]
Dong, Hai [2 ]
Bin Daud, Md Nor Ridzuan [3 ]
机构
[1] Univ Malaya, Dept Informat Syst, Kuala Lumpur, Malaysia
[2] Curtin Univ Technol, Sch Informat Syst, Perth, WA, Australia
[3] Univ Malaya, Dept Artificial Intelligence, Kuala Lumpur, Malaysia
关键词
Opinion mining; sentiment analysis; text mining; classifier; social media;
D O I
10.1109/CISIS.2013.31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Microblogging such as Twitter provides a rich source of information about products, personalities, and trends, etc. We proposed a simple methodology for analyzing sentiment of users in Twitter. First, we automatically collected Twitter corpus in positive and negative tweets. Second, we built a simple sentiment classifier by utilizing the Naive Bayes model to determine the positive and negative sentiment of a tweet. Third, we tested the classifier against a collection of users' opinions from five interesting domains of Twitter, i.e., news, finance, job, movies, and sport. The experimental results show that it is feasible to use Twitter corpus alone to classify new tweet for a certain domain applications.
引用
收藏
页码:144 / 149
页数:6
相关论文
共 50 条
  • [41] Informal Multilingual Multi-domain Sentiment Analysis
    Stajner, Tadej
    Novalija, Inna
    Mladenic, Dunja
    INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2013, 37 (04): : 373 - 380
  • [42] Educational Data Mining: Sentiment analysis in a university domain during the pandemic
    Benavides-Morales, Cristina
    Herrera-Flores, Boris
    CHASQUI-REVISTA LATINOAMERICANA DE COMUNICACION, 2023, (151): : 217 - 236
  • [43] Sentiment Analysis: from Binary to Multi-Class Classification A Pattern-Based Approach for Multi-Class Sentiment Analysis in Twitter
    Bouazizi, Mondher
    Ohtsuki, Tomoaki
    2016 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2016,
  • [44] A Pattern-Based Approach for Multi-Class Sentiment Analysis in Twitter
    Bouazizi, Mondher
    Ohtsuki, Tomoaki
    IEEE ACCESS, 2017, 5 : 20617 - 20639
  • [45] Sentiment analysis of multimodal twitter data
    Kumar, Akshi
    Garg, Geetanjali
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (17) : 24103 - 24119
  • [46] Sentiment analysis and Twitter: a game proposal
    Marco Furini
    Manuela Montangero
    Personal and Ubiquitous Computing, 2018, 22 : 771 - 785
  • [47] SENTIMENT ANALYSIS OF THE SYRIAN CONFLICT ON TWITTER
    Lucic, Danijela
    Katalinic, Josip
    Dokman, Tomislav
    MEDIJSKE STUDIJE-MEDIA STUDIES, 2020, 11 (22): : 46 - 61
  • [48] Analysis of Political Sentiment Orientations on Twitter
    Ansari, Mohd Zeeshan
    Aziz, M. B.
    Siddiqui, M. O.
    Mehra, H.
    Singh, K. P.
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE, 2020, 167 : 1821 - 1828
  • [49] Sentiment Analysis of Turkish Twitter Data
    Shehu, Harisu Abdullahi
    Tokat, Sezai
    Sharif, Md. Haidar
    Uyaver, Sahin
    THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019), 2019, 2183
  • [50] Clustering and Sentiment Analysis on Twitter Data
    Ahuja, Shreya
    Dubey, Gaurav
    2017 2ND INTERNATIONAL CONFERENCE ON TELECOMMUNICATION AND NETWORKS (TEL-NET), 2017, : 420 - 424