Marine Communications Channel Modeling Using the Finite-Difference Time Domain Method

被引:33
|
作者
Timmins, Ian J. [1 ,2 ]
O'Young, Siu [1 ]
机构
[1] Mem Univ Newfoundland, St John, NF A1B 3X5, Canada
[2] Opt Cable Corp, Asheville, NC 28801 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Finite-difference methods; marine vehicle communications; microwave propagation; multipath channels; overwater radio propagation; unmanned aerial vehicles (UAVs); ROUGH-SURFACE; PATH LOSS; PROPAGATION; SCATTERING; STATISTICS; SYSTEM;
D O I
10.1109/TVT.2008.2010326
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Broad area maritime surveillance (BAMS) is a current interest area for the application of unmanned aerial vehicles (UAVs). Robust communications is a primary concern that impedes the general acceptance of UAVs by the Federal Aviation Administration (FAA), as loss of communications link is generally perceived as a loss of vehicular control. Thus, to gain an increased understanding of the communications channel UAVs' experience during low-level maritime operations, a channel-modeling effort using the finite-difference time domain method (FDTD) is conducted. The focus of this effort has been to assess the effects of sea surface shadowing conditions on the marine communications channel. A 2-D electromagnetic (EM) simulator has been developed, utilizing modified Pierson-Moskowitz (PM) spectral models to generate a random sea surface in a deep-water location from which multipath scattering is produced. Data analysis conducted on the transient EM simulation results has produced generalized path loss exponent, standard deviation, mean excess delay, and root mean square delay models as a function of frequency and observable sea surface height for fixed transmitter and receiver locations.
引用
收藏
页码:2626 / 2637
页数:12
相关论文
共 50 条
  • [41] Analysis of a diffractive microlens using the finite-difference time-domain method
    Liu, Yuling
    Liu, Hua
    JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, 2010, 9 (03):
  • [43] MODELLING OPTICAL PROPERTIES OF ALGAE USING THE FINITE-DIFFERENCE TIME DOMAIN METHOD
    Samadi, Zahra
    Johlin, Eric
    DeGroot, Christopher
    Peerhossaini, Hassan
    PROCEEDINGS OF ASME 2021 FLUIDS ENGINEERING DIVISION SUMMER MEETING (FEDSM2021), VOL 3, 2021,
  • [44] FERRITE ANALYSIS USING THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD
    REINEIX, A
    MONEDIERE, T
    JECKO, F
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1992, 5 (13) : 686 - 686
  • [45] Analysis of microstrip circuits using a Finite-Difference Time-Domain method
    Banciu, M.G.
    Ramer, R.
    Advances in Physics, Electronics and Signal Processing Applications, 2000, : 156 - 160
  • [46] POYNTINGS THEOREM FOR THE FINITE-DIFFERENCE - TIME-DOMAIN METHOD
    DEMOERLOOSE, J
    DEZUTTER, D
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1995, 8 (05) : 257 - 260
  • [47] Numerical modeling of packaging effects using the Finite-Difference Time-Domain technique
    Piket-May, M
    Rumsey, I
    Byers, A
    Boots, B
    Thomas, K
    Gravrok, R
    ELECTRICAL PERFORMANCE OF ELECTRONIC PACKAGING, 1998, : 264 - 266
  • [48] Introduction to the Segmented Finite-Difference Time-Domain Method
    Wu, Yan
    Wassell, Ian
    IEEE TRANSACTIONS ON MAGNETICS, 2009, 45 (03) : 1364 - 1367
  • [49] Uncertainty Analyses in the Finite-Difference Time-Domain Method
    Edwards, Robert S.
    Marvin, Andrew C.
    Porter, Stuart J.
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2010, 52 (01) : 155 - 163
  • [50] Time-domain finite-difference beam propagation method
    Masoudi, HM
    AlSunaidi, MA
    Arnold, JM
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1999, 11 (10) : 1274 - 1276