Uniform limit theorems for functions of order statistics

被引:0
|
作者
Wozabal, Nancy [1 ]
机构
[1] Univ Vienna, Dept Stat & Decis Support Syst, A-1010 Vienna, Austria
关键词
D O I
10.1016/j.spl.2009.03.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss uniform limit theorems for linear combinations of order statistics, when a family of weighting functions (or score functions) is involved. We also show an application of the results to derive asymptotic properties of coherent risk functionals. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1450 / 1455
页数:6
相关论文
共 50 条
  • [41] MARTINGALE LIMIT-THEOREMS FOR DIVISIBLE STATISTICS
    KHMALADZE, EV
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1983, 27 (04) : 879 - 879
  • [42] Limit theorems for functions of marginal quantiles
    Babu, G. Jogesh
    Bai, Zhidong
    Choi, Kwok Pui
    Mangalam, Vasudevan
    BERNOULLI, 2011, 17 (02) : 671 - 686
  • [43] Limit Theorems for Independent Nonmeasurable Functions
    Wittje B.
    Results in Mathematics, 2000, 38 (1-2) : 180 - 186
  • [44] LIMIT THEOREMS FOR MARKOV TRANSITION FUNCTIONS
    ISAAC, R
    ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (02): : 621 - &
  • [45] Limit theorems for random symmetric functions
    Michaletzky Gy.
    Szeidl L.
    Journal of Mathematical Sciences, 1998, 89 (5) : 1507 - 1516
  • [46] Limit theorems for iterated random functions
    Wu, WB
    Shao, XF
    JOURNAL OF APPLIED PROBABILITY, 2004, 41 (02) : 425 - 436
  • [47] FUNCTIONS OF ORDER STATISTICS
    SHORACK, GR
    ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (02): : 412 - &
  • [48] FUNCTIONS OF ORDER STATISTICS
    SHORACK, GR
    ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (03): : 1154 - +
  • [49] Uniform central limit theorems for Kernel density estimators
    Gine, Evarist
    Nickl, Richard
    PROBABILITY THEORY AND RELATED FIELDS, 2008, 141 (3-4) : 333 - 387
  • [50] Limit theorems for U-statistics of Bernoulli data
    Giraudo, Davide
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2021, 18 (01): : 793 - 828