Association analysis, genetic diversity and structure analysis of tobacco based on AFLP markers

被引:28
|
作者
Dadras, Ahmad Reza [1 ]
Sabouri, Hossein [2 ]
Nejad, Ghasem Mohammadi [3 ]
Sabouri, Atefeh [1 ]
Shoai-Deylami, Mardavij [4 ]
机构
[1] Univ Guilan, Fac Agr Sci, Dept Agron & Plant Breeding, Rasht, Iran
[2] Gonbad Kavous Univ, Dept Plant Prod, Collage Agr Sci & Nat Resources, Gonbad Kavous 4971799151, Iran
[3] Shahid Bahonar Univ Kerman, Dept Agron & Plant Breeding, Coll Agr, Kerman, Iran
[4] Researcher Tobacco Res Ctr, Rasht, Iran
关键词
Cluster analysis; Genetic distance; Nicotiana tabacum; Population structure; MOLECULAR CHARACTERIZATION; CLUSTER-ANALYSIS; SOFTWARE; POLYMORPHISM; RESISTANCE; CULTIVARS; VARIETIES; RAPD; DNA; L;
D O I
10.1007/s11033-014-3194-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Knowledge in the area of genetic diversity could aid in providing useful information in the selection of material for breeding such as hybridization programs and quantitative trait loci mapping. To this end, 50 Nicotiana tabacum genotypes were genotyped with 21 primer combination of amplified fragment length polymorphism (AFLP). A total of 480 unambiguous DNA fragments and 373 polymorphic bands were produced with an average of 17.76 per primer combination. Also, the results revealed high polymorphic rate varing from 52.63 to 92.59 %, demonstrating that AFLP technique utilized in this research can be a powerful and valuable tool in the breeding program of N. tabacum. Cluster analysis based on complete linkage method using Jaccard's genetic distance, grouped the 50 tobacco genotypes into eight clusters including three relatively big clusters, one cluster including Golden gift, Burly 7022 and Burly Kreuzung, one cluster consisting of two individuals (Pereg234, R9) and three single-member clusters (Pennbel69, Coker176 and Budisher Burley E), Recent genotypes showed high genetic distance from other genotypes belonging to cluster I and II. Association analysis between seven important traits and AFLP markers were performed using four statistical models. The results revealed the model containing both the factors, population structure (Q) and general similarity in genetic background arising from shared kinship (K), reduces false positive associations between markers and phenotype. According to the results nine markers were determined that could be considered to be the most interesting candidates for further studies.
引用
收藏
页码:3317 / 3329
页数:13
相关论文
共 50 条
  • [31] Comparative analysis of genetic diversity in Tunisian apricot germplasm using AFLP and SSR markers
    Lamia, Krichen
    Hedia, Bourguiba
    Jean-Marc, Audergon
    Neila, Trifi-Farah
    SCIENTIA HORTICULTURAE, 2010, 127 (01) : 54 - 63
  • [32] Genetic diversity analysis of Croton antisyphiliticus Mart. using AFLP molecular markers
    Oliveira, T. G.
    Pereira, A. M. S.
    Coppede, J. S.
    Franca, S. C.
    Ming, L. C.
    Bertoni, B. W.
    GENETICS AND MOLECULAR RESEARCH, 2016, 15 (01)
  • [33] AFLP analysis on genetic diversity of Zoysia japonica
    Jin Hong
    Han Liebao
    Zhang Yongming
    PROCEEDINGS OF THE IIND INTERNATIONAL CONFERENCE ON TURFGRASS SCIENCE AND MANAGEMENT FOR SPORTS FIELDS, 2008, (783): : 265 - +
  • [34] Genetic Diversity among Flue-cured Tobacco Cultivars on the Basis of AFLP Markers
    Liu, Xiao Zhen
    He, Chuan Shen
    Yang, Yu Ming
    Zhang, Han Yao
    CZECH JOURNAL OF GENETICS AND PLANT BREEDING, 2009, 45 (04) : 155 - 159
  • [35] Analysis of Genetic Diversity in Pongamia [Pongamia pinnata (L) Pierrre] using AFLP Markers
    Mahendar Thudi
    Revathi Manthena
    Suhas P. Wani
    Leela Tatikonda
    David A. Hoisington
    Rajeev K. Varshney
    Journal of Plant Biochemistry and Biotechnology, 2010, 19 : 209 - 216
  • [36] Genetic diversity analysis of some Egyptian Origanum and Thymus species using AFLP markers
    El-Shaimaa Saad El-Demerdash
    Esraa Attia Elsherbeny
    Yasser Abdelhakim Mohamed Salama
    Mohamed Zoelfakar Ahmed
    Journal of Genetic Engineering and Biotechnology, 17
  • [37] Analysis of genetic diversity in cultivated jute determined by means of SSR markers and AFLP profiling
    Basu, A
    Ghosh, M
    Meyer, R
    Powell, W
    Basak, SL
    Sen, SK
    CROP SCIENCE, 2004, 44 (02) : 678 - 685
  • [38] Genetic diversity analysis using lowly polymorphic dominant markers: The example of AFLP in pigs
    Foulley, J. -L.
    Van Schriek, M. G. M.
    Alderson, L.
    Amigues, Y.
    Bagga, M.
    Boscher, M. -Y.
    Brugmans, B.
    Cardellino, R.
    Davoli, R.
    Delgado, J. V.
    Fimland, E.
    Gandini, G. C.
    Glodek, P.
    Groenen, M. A. M.
    Hammond, K.
    Harlizius, B.
    Heuven, H.
    Joosten, R.
    Martinez, A. M.
    Matassino, D.
    Meyer, J. -N.
    Peleman, J.
    Ramos, A. M.
    Rattink, A. P.
    Russo, V.
    Siggens, K. W.
    Vega-Pla, J. L.
    Ollivier, L.
    JOURNAL OF HEREDITY, 2006, 97 (03) : 244 - 252
  • [39] Genetic analysis of the grapevine cultivar 'picolit' based on microsatellite and AFLP markers
    Zulini, L
    Fabro, E
    Peterlunger, E
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON GRAPE GENETICS AND BREEDING, VOLS 1 AND 2, 2003, (603): : 467 - 472
  • [40] Analysis of molecular diversity in Crinipellis perniciosa with AFLP markers
    Randy C. Ploetz
    Raymond J. Schnell
    Zhentu Ying
    Qi Zheng
    Cecile T. Olano
    Juan C. Motamayor
    Elizabeth S. Johnson
    European Journal of Plant Pathology, 2005, 111 : 317 - 326