Maximal stable sets of two-player games

被引:11
|
作者
Govindan, S [1 ]
Wilson, R
机构
[1] Univ Western Ontario, Dept Econ, London, ON N6A 5C2, Canada
[2] Stanford Univ, Sch Business, Stanford, CA 94305 USA
关键词
perfect equilibria; stable sets;
D O I
10.1007/s001820200098
中图分类号
F [经济];
学科分类号
02 ;
摘要
If a connected component of perfect equilibria of a two-player game contains a stable set as defined by Mertens, then the component is itself stable. Thus the stable sets maximal under inclusion are connected components of perfect equilibria.
引用
收藏
页码:557 / 566
页数:10
相关论文
共 50 条
  • [21] Character Animation in Two-Player Adversarial Games
    Wampler, Kevin
    Andersen, Erik
    Herbst, Evan
    Lee, Yongjoon
    Popovic, Zoran
    ACM TRANSACTIONS ON GRAPHICS, 2010, 29 (03):
  • [22] Enumeration of Nash equilibria for two-player games
    David Avis
    Gabriel D. Rosenberg
    Rahul Savani
    Bernhard von Stengel
    Economic Theory, 2010, 42 : 9 - 37
  • [23] Fair Adversaries and Randomization in Two-Player Games
    Asarin, Eugene
    Chane-Yack-Fa, Raphael
    Varacca, Daniele
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATIONAL STRUCTURES, PROCEEDINGS, 2010, 6014 : 64 - +
  • [24] Solution methods for two-player differential games
    Grigorenko N.L.
    Kiselev Yu.N.
    Lagunova N.V.
    Silin D.B.
    Trin'ko N.G.
    Computational Mathematics and Modeling, 1997, 8 (1) : 34 - 48
  • [25] Optimal recommendation in two-player bargaining games
    Mao, Liang
    MATHEMATICAL SOCIAL SCIENCES, 2020, 107 : 41 - 45
  • [26] Enumeration of Nash equilibria for two-player games
    Avis, David
    Rosenberg, Gabriel D.
    Savani, Rahul
    von Stengel, Bernhard
    ECONOMIC THEORY, 2010, 42 (01) : 9 - 37
  • [27] Statistical mechanics of random two-player games
    Berg, J
    PHYSICAL REVIEW E, 2000, 61 (03): : 2327 - 2339
  • [28] Two-player stochastic games II: The case of recursive games
    Vieille, N
    ISRAEL JOURNAL OF MATHEMATICS, 2000, 119 (1) : 93 - 126
  • [29] Strong rationalizability for two-player noncooperative games
    Anthonisen, N
    ECONOMIC THEORY, 1999, 13 (01) : 143 - 169
  • [30] Two-player stochastic games II: The case of recursive games
    Nicolas Vieille
    Israel Journal of Mathematics, 2000, 119 : 93 - 126