A robust multiple heartbeats classification with weight-based loss based on convolutional neural network and bidirectional long short-term memory

被引:3
|
作者
Yang, Mengting [1 ,2 ,3 ,4 ]
Liu, Weichao [1 ,2 ]
Zhang, Henggui [1 ,2 ,5 ]
机构
[1] Southwest Med Univ, Inst Cardiovasc Res, Collaborat Innovat Ctr Prevent Cardiovasc Dis, Key Lab Med Electrophysiol,Minist Educ, Luzhou, Peoples R China
[2] Southwest Med Univ, Inst Cardiovasc Res, Collaborat Innovat Ctr Prevent Cardiovasc Dis, Med Electrophysiol Key Lab Sichuan Prov, Luzhou, Peoples R China
[3] Southwest Med Univ, Sch Med Informat & Engn, Luzhou, Peoples R China
[4] Zhejiang Univ, Sch Biomed Engn & Instrument Sci, Hangzhou, Peoples R China
[5] Univ Manchester, Dept Phys & Astron, Manchester, England
关键词
electrocardiogram (ECG); deep learning; cardiac arrhythmia; convolutional neural network (CNN); bidirectional long short-term memory (bi-LSTM); DEEP LEARNING APPROACH; ECG CLASSIFICATION; SIGNALS;
D O I
10.3389/fphys.2022.982537
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Background: Analysis of electrocardiogram (ECG) provides a straightforward and non-invasive approach for cardiologists to diagnose and classify the nature and severity of variant cardiac diseases including cardiac arrhythmia. However, the interpretation and analysis of ECG are highly working-load demanding, and the subjective may lead to false diagnoses and heartbeats classification. In recent years, many deep learning works showed an excellent role in accurate heartbeats classification. However, the imbalance of heartbeat classes is universal in most of the available ECG databases since abnormal heartbeats are always relatively rare in real life scenarios. In addition, many existing approaches achieved prominent results by removing noise and extracting features in data preprocessing, which relies heavily on powerful computers. It is a pressing need to develop efficient and automatic light weighted algorithms for accurate heartbeats classification that can be used in portable ECG sensors.Objective: This study aims at developing a robust and efficient deep learning method, which can be embedded into wearable or portable ECG monitors for classifying heartbeats.Methods: We proposed a novel and light weighted deep learning architecture with weight-based loss based on a convolutional neural network (CNN) and bidirectional long short-term memory (Bi-LSTM) that can automatically identify five types of ECG heartbeats according to the AAMI EC57 standard. It was also true that the raw ECG signals were simply segmented without noise removal and other feature extraction processing. Moreover, to tackle the challenge of classification bias due to imbalanced ECG datasets for different types of arrhythmias, we introduced a weight-based loss function to reduce the influence of over-weighted categories in the ECG dataset. For avoiding the influence of the division of validation dataset, k-fold method was adopted to improve the reliability of the model.Results: The proposed algorithm is trained and tested on MIT-BIH Arrhythmia Database, and achieves an average of 99.33% accuracy, 93.67% sensitivity, 99.18% specificity, 89.85% positive prediction, and 91.65% F-1 score.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Recognition of aggressive episodes of pigs based on convolutional neural network and long short-term memory
    Chen, Chen
    Zhu, Weixing
    Steibel, Juan
    Siegford, Janice
    Wurtz, Kaitlin
    Han, Junjie
    Norton, Tomas
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 169
  • [32] Beat-to-Beat Electrocardiogram Waveform Classification Based on a Stacked Convolutional and Bidirectional Long Short-Term Memory
    Nurmaini, Siti
    Darmawahyuni, Annisa
    Rachmatullah, Muhammad Naufal
    Effendi, Jannes
    Sapitri, Ade Iriani
    Firdaus, Firdaus
    Tutuko, Bambang
    IEEE ACCESS, 2021, 9 : 92600 - 92613
  • [33] A convolutional neural network based degradation indicator construction and health prognosis using bidirectional long short-term memory network for rolling bearings
    Cheng, Yiwei
    Hu, Kui
    Wu, Jun
    Zhu, Haiping
    Shao, Xinyu
    ADVANCED ENGINEERING INFORMATICS, 2021, 48
  • [34] Speech emotion recognition based on convolutional neural network with attention-based bidirectional long short-term memory network and multi-task learning
    Liu, Zhen-Tao
    Han, Meng-Ting
    Wu, Bao-Han
    Rehman, Abdul
    APPLIED ACOUSTICS, 2023, 202
  • [35] Research on Emotion Analysis and Psychoanalysis Application With Convolutional Neural Network and Bidirectional Long Short-Term Memory
    Liu, Baitao
    FRONTIERS IN PSYCHOLOGY, 2022, 13
  • [36] Fault diagnosis algorithm of electric vehicle based on convolutional neural network and long short-term memory neural network
    Li, Xiaojie
    Zhang, Yang
    Wang, Haolin
    Zhao, Heming
    Cui, Xueliang
    Yue, Xikai
    Ma, Zilin
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2024, 21 (16) : 3638 - 3653
  • [37] Remaining Useful Life Prediction Method Based on Convolutional Neural Network and Long Short-Term Memory Neural Network
    Zhao, Kaisheng
    Zhang, Jing
    Chen, Shaowei
    Wen, Pengfei
    Ping, Wang
    Zhao, Shuai
    2023 PROGNOSTICS AND HEALTH MANAGEMENT CONFERENCE, PHM, 2023, : 336 - 343
  • [38] Hyperspectral Image Classification Using Attention-Based Bidirectional Long Short-Term Memory Network
    Mei, Shaohui
    Li, Xingang
    Liu, Xiao
    Cai, Huimin
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [39] Encrypted Traffic Classification with a Convolutional Long Short-Term Memory Neural Network<bold> </bold>
    Zou, Zhuang
    Ge, Jingguo
    Zheng, Hongbo
    Wu, Yulei
    Han, Chunjing
    Yao, Zhongjiang
    IEEE 20TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS / IEEE 16TH INTERNATIONAL CONFERENCE ON SMART CITY / IEEE 4TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND SYSTEMS (HPCC/SMARTCITY/DSS), 2018, : 329 - 334
  • [40] A Hybrid Model based on Convolutional Neural Networks and Long Short-term Memory for Rest Tremor Classification
    Fourati, Jihen
    Othmani, Mohamed
    Ltifi, Hela
    ICAART: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 3, 2022, : 75 - 82