Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review

被引:98
|
作者
Mukhopadhyay, Mainaak [1 ]
Mondal, Tapan K. [2 ]
Chand, Pradeep K. [3 ]
机构
[1] Univ Kalyani, Dept Bot, Nadia 741235, W Bengal, India
[2] Natl Bur Plant Genet Resources, Div Genom Resources, New Delhi 110012, India
[3] Utkal Univ, Postgrad Dept Bot, Plant Cell & Tissue Culture Facil, Bhubaneswar 751004, Odisha, India
关键词
Tea; In vitro propagation; Genetic improvement; Molecular markers; Functional genomics; Proteomics; Metabolomics; EXPRESSED SEQUENCE TAGS; GENETIC DIVERSITY ASSESSMENT; AMPLIFIED POLYMORPHIC DNA; SOMATIC EMBRYOGENESIS; PHENOLIC-COMPOUNDS; GREEN TEA; MOLECULAR-CLONING; TISSUE-CULTURES; CULTIVATED TEA; RFLP ANALYSIS;
D O I
10.1007/s00299-015-1884-8
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Tea is a woody perennial tree with a life span of more than 100 years. Conventional breeding of tea is slow and limited primarily to selection which leads to narrowing down of its genetic base. Harnessing the benefits of wild relatives has been negligible due to low cross-compatibility, genetic drag and undesirable alleles for low yield. Additionally, being a recalcitrant species, in vitro propagation of tea is constrained too. Nevertheless, maneuvering with tissue/cell culture techniques, a considerable success has been achieved in the area of micropropagation, somatic embryogenesis as well as genetic transformation. Besides, use of molecular markers, "expressomics" (transcriptomics, proteomics, metabolomics), map-based cloning towards construction of physical maps, generation of expressed sequenced tags (ESTs) have facilitated the identification of QTLs and discovery of genes associated with abiotic or biotic stress tolerance and agronomic traits. Furthermore, the complete genome (or at least gene space) sequence of tea is expected to be accessible in the near future which will strengthen combinational approaches for improvement of tea. This review presents a comprehensive account of the success and limitations of the biotechnological tools and techniques hitherto applied to tea and its wild relatives. Expectedly, this will form a basis for making further advances aimed at genetic improvement of tea in particular and of economically important woody perennials in general.
引用
收藏
页码:255 / 287
页数:33
相关论文
共 50 条
  • [31] Diversity Analysis of Diazotrophic Bacteria Associated with the Roots of Tea (Camellia sinensis (L.) O. Kuntze)
    Arvind, Gulati
    Sood, Swati
    Rahi, Praveen
    Thakur, Rishu
    Chauhan, Sunita
    Chadha, Isha Chawla Nee
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 21 (06) : 545 - 555
  • [32] PHENOLICS METABOLISM IN BORON-DEFICIENT TEA [CAMELLIA SINENSIS (L.) O. KUNTZE] PLANTS
    Hajiboland, Roghieh
    Bahrami-Rad, Sara
    Bastani, Soodabeh
    ACTA BIOLOGICA HUNGARICA, 2013, 64 (02): : 196 - 206
  • [33] Pseudo-self-incompatibility in some tea clones (Camellia sinensis (L.) O.!Kuntze)
    Wachira, FN
    Kamunya, SK
    JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY, 2005, 80 (06): : 716 - 720
  • [34] Genomic mapping and testing for quantitative trait loci in tea (Camellia sinensis (L.) O. Kuntze)
    Kamunya, S. M.
    Wachira, F. N.
    Pathak, R. S.
    Korir, R.
    Sharma, V.
    Kumar, R.
    Bhardwaj, P.
    Chalo, R.
    Ahuja, P. S.
    Sharma, R. K.
    TREE GENETICS & GENOMES, 2010, 6 (06) : 915 - 929
  • [35] An Improved Protocol for the Isolation of RNA from Roots of Tea (Camellia sinensis (L.) O. Kuntze)
    Muoki, Richard Chalo
    Paul, Asosii
    Kumari, Anita
    Singh, Kashmir
    Kumar, Sanjay
    MOLECULAR BIOTECHNOLOGY, 2012, 52 (01) : 82 - 88
  • [36] Characterization of dihydroflavonol 4-reductase cDNA in tea [Camellia sinensis (L.) O. Kuntze]
    Kashmir Singh
    Sanjay Kumar
    Sudesh Kumar Yadav
    Paramvir Singh Ahuja
    Plant Biotechnology Reports, 2009, 3 : 95 - 101
  • [37] Genomic mapping and testing for quantitative trait loci in tea (Camellia sinensis (L.) O. Kuntze)
    S. M. Kamunya
    F. N. Wachira
    R. S. Pathak
    R. Korir
    V. Sharma
    R. Kumar
    P. Bhardwaj
    R. Chalo
    P. S. Ahuja
    R. K. Sharma
    Tree Genetics & Genomes, 2010, 6 : 915 - 929
  • [38] INVITRO CLONAL PROPAGATION OF TEA (CAMELLIA-SINENSIS (L) KUNTZE,O.)
    AGARWAL, B
    SINGH, U
    BANERJEE, M
    PLANT CELL TISSUE AND ORGAN CULTURE, 1992, 30 (01) : 1 - 5
  • [39] Characterization of dihydroflavonol 4-reductase cDNA in tea [Camellia sinensis (L.) O. Kuntze]
    Singh, Kashmir
    Kumar, Sanjay
    Yadav, Sudesh Kumar
    Ahuja, Paramvir Singh
    PLANT BIOTECHNOLOGY REPORTS, 2009, 3 (01) : 95 - 101
  • [40] Classification and Origins of Cultivated Tea [Camellia sinensis (L.) O. Kuntze] Based on SNP Analysis
    Borthakur, Devajit
    Tan, Hua-Wei
    Meinhardt, Lyndel
    Wang, Boyi
    Zhou, Lin
    Fang, Wanping
    Zhang, Dapeng
    HORTSCIENCE, 2018, 53 (09) : S60 - S61