Disentanglement and loss of quantum correlations due to one global collective noise effect are described for two-qubit Schrodinger cat and Werner states of a four level trapped ion quantum system. Once the Jaynes-Cummings ionic interactions are mapped onto a Dirac spinor structure, the elementary tools for computing quantum correlations of two-qubit ionic states are provided. With two-qubit quantum numbers related to the total angular momentum and to its projection onto the direction of an external magnetic field (which lifts the degeneracy of the ion's internal levels), a complete analytical profile of entanglement for the Schrodinger cat and Werner states is obtained. Under vacuum noise (during spontaneous emission), the two-qubit entanglement in the Schrodinger cat states is shown to vanish asymptotically. Otherwise, the robustness of Werner states is concomitantly identified, with the entanglement content recovered by their noiseless-like evolution. Most importantly, our results point to a firstly reported sudden transition between classical and quantum decay regimes driven by a classical collective noise on the Schrodinger cat states, which has been quantified by the geometric discord.