Blind Image Quality Assessment Using Latent Dirichlet Allocation Model

被引:1
|
作者
Luo, Wang [1 ]
Zhang, Tianbing [1 ]
机构
[1] State Grid Elect Power Res Inst, Nanjing 211106, Jiangsu, Peoples R China
来源
MECHANICAL ENGINEERING, MATERIALS AND ENERGY III | 2014年 / 483卷
关键词
Image Quality; Latent Dirichlet Allocation; Distortions; Quality Assessment; No-reference;
D O I
10.4028/www.scientific.net/AMM.483.594
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we propose a blind image quality assessment (IQA) method under latent Dirichlet allocation (LDA) model. To assess the image quality, firstly, we learn topic-specific word distribution by training a set of pristine and distorted images without human subjective scores. Secondly, LDA model is used to estimate probability distribution of topic for the regions in the test images. Finally, we calculate the perceptual quality score of the test image by comparing the estimated probabilities of topics of the test image with that for the pristine images. Note that the quality-aware visual words are used to represent the images, which generated with respect to the natural scene statistic features. Experimental evaluation on the publicly available subjective-rated database LIVE demonstrates that our proposed method correlates reasonably well with different mean opinion scores (DMOS).
引用
收藏
页码:594 / 598
页数:5
相关论文
共 50 条
  • [21] Latent Dirichlet allocation
    Blei, DM
    Ng, AY
    Jordan, MI
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 601 - 608
  • [22] Author Identification Using Latent Dirichlet Allocation
    Calvo, Hiram
    Hernandez-Castaneda, Angel
    Garcia-Flores, Jorge
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, CICLING 2017, PT II, 2018, 10762 : 303 - 312
  • [23] Multisensor Earth Observation Image Classification Based on a Multimodal Latent Dirichlet Allocation Model
    Bahmanyar, Reza
    Espinoza-Molina, Daniela
    Datcu, Mihai
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (03) : 459 - 463
  • [24] A More Effective Method For Image Representation: Topic Model Based on Latent Dirichlet Allocation
    Li, Zongmin
    Tian, Weiwei
    Li, Yante
    Kuang, Zhenzhong
    Liu, Yujie
    2015 14TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN AND COMPUTER GRAPHICS (CAD/GRAPHICS), 2015, : 143 - 148
  • [25] Interpreting atomization of agricultural spray image patterns using latent Dirichlet allocation techniques
    Li, Hongfei
    Cryer, Steven
    Raymond, John
    Acharya, Lipi
    ARTIFICIAL INTELLIGENCE IN AGRICULTURE, 2020, 4 (04): : 253 - 261
  • [26] Image hierarchical representations models based on latent dirichlet allocation
    Wang, Fushun
    Li, Yan
    Sun, Xiaohua
    Cai, Zhenjiang
    Journal of Multimedia, 2013, 8 (04): : 358 - 364
  • [27] Partial Membership Latent Dirichlet Allocation for Soft Image Segmentation
    Chen, Chao
    Zare, Alina
    Trinh, Huy N.
    Omotara, Gbenga O.
    Cobb, James Tory
    Lagaunne, Timotius A.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (12) : 5590 - 5602
  • [28] Breast Histopathological Image Retrieval Based on Latent Dirichlet Allocation
    Ma, Yibing
    Jiang, Zhiguo
    Zhang, Haopeng
    Xie, Fengying
    Zheng, Yushan
    Shi, Huaqiang
    Zhao, Yu
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2017, 21 (04) : 1114 - 1123
  • [29] Pseudo-Supervised Latent Dirichlet Allocation for Image Annotation
    Pham, Huong Thi
    Choi, Seungjin
    2015 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2015): BIG DATA ANALYTICS FOR HUMAN-CENTRIC SYSTEMS, 2015, : 1924 - 1929
  • [30] Blind image quality assessment via probabilistic latent semantic analysis
    Yang, Xichen
    Sun, Quansen
    Wang, Tianshu
    SPRINGERPLUS, 2016, 5